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Two problems at two different abstraction levels of computational biology are studied. At

the molecular level, efficient pattern matching algorithms in DNA sequences are presented.

For gene order data, an efficient data structure is presented capable of storing all gene

re-orderings in a systematic manner. A common characteristic of presented methods is

the use of binary decision diagrams that store and manipulate binary functions.

Searching for a particular pattern in a very large DNA database, is a fundamental and

essential component in computational biology. In the biological world, pattern matching

is required for finding repeats in a particular DNA sequence, finding motif and aligning

sequences etc. Due to immense amount and continuous increase of biological data, the

searching process requires very fast algorithms. This also requires encoding schemes for

efficient storage of these search processes to operate on. Due to continuous progress in

genome sequencing, genome rearrangements and construction of evolutionary genome

graphs, which represent the relationships between genomes, become challenging tasks.

Previous approaches are largely based on distance measure so that relationship between

more phylogenetic species can be established with some specifically required

rearrangement operations and hence within certain computational time. However because

of the large volume of the available data, storage space and construction time for this

evolutionary graph is still a problem. In addition, it is important to keep track of all
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possible rearrangement operations for a particular genome as biological processes are

uncertain.

This study presents a binary function-based tool set for efficient DNA sequence storage.

A novel scalable method is also developed for fast offline pattern searches in large DNA

sequences. This study also presents a method which efficiently stores all the gene

sequences associated with all possible genome rearrangements such as transpositions and

construct the evolutionary genome structure much faster for multiple species. The

developed methods benefit from the use of Boolean functions; their compact storage using

canonical data structure and the existence of built-in operators for these data structures.

The time complexities depend on the size of the data structures used for storing the

functions that represent the DNA sequences and/or gene sequences. It is shown that the

presented approaches exhibit sub linear time complexity to the sequence size. The

number of nodes present in the DNA data structure, string search time on these data

structures, depths of the genome graph structure, and the time of the rearrangement

operations are reported.

Experiments on DNA sequences from the NCBI database are conducted for DNA

sequence storage and search process. Experiments on large gene order data sets such as:

human mitochondrial data and plant chloroplast data are conducted and depth of this

structure was studied for evolutionary processes on gene sequences. The results show that

the developed approaches are scalable.
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CHAPTER 1

INTRODUCTION

The growing interest in genome research has caused an explosive growth in biological

databases making it an increasingly challenging task to store and retrieve data efficiently.

The length of the sequences and the expected depth of evolutionary relatedness

introduces challenges in storing and manipulating biological data.

Key challenges include (a) how to manage the huge biological data in a compact

manner and (b) how to provide a fast access of information through pattern search. It is

well known that use of data structures (instead of a database or file) greatly accelerates

computation speed, provided that the data structure is compact. Many existing search

methods are based on the sequential database scanning which adversely affects the search

efficiency. This motivated us to develop and implement novel algorithms for efficient data

storage in terms of scalability of database size and very fast and efficient search methods

in this dissertation research.

DNA (deoxyribonucleic acid) is large micro-molecule present in living organisms and

is the main constituent of chromosomes that carries genetic information. It consists of

two nucleotide strands. Each strand consists of a string of molecules called bases. The

genetic information of DNA is encoded in the strands. The bases are typically referred as

A, G, C and T, representing the initial letters of their name: Adenine, Guanine, Cytosine

and Thymine. A strand of DNA, which can be up to 3 billion base pair long (in case of

human), is expressed as a string over the finite set {A, C, G, T}. An example of a DNA

strand is AGCGGTGCG. It is essential to be able to identify the locations of prespecified

base sequences in a DNA database in order to justify certain genetic behaviors. Searches

are complicated because some bases in the prespecified base sequence may be altered.

Such searches are called approximate.

Changes of positions of the bases such as exchanging the positions of A with T in
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the above example cause a local mutation. Evolution happens due to the exchanging of

gene positions in a gene sequence present in a Genome. Such exchanges are called

transpositions. A gene is a sequence of bases. The genes in the gene sequence or

chromosome are represented by numbers 1, 2....n. A unichromosomal genome is the

genome that contains one gene sequence. For example, a unichromosomal genome with

n=5 genes can be represented by 53421. Genome rearrangements are integral part of the

evolutionary information between the species. Hence it is important and essential to

develop an evolution based framework for embedding the questions regarding genome

rearrangements. However because of the availability of vast data sets scientists tend to

reconstruct the phylogenies based on gene orders, using a measure of evolutionary

distance between two genomes which is a difficult computational problem by itself.

Contrary to the traditional approaches this dissertation presents an evolution based graph

structure to accommodate all possible rearrangements due to transpositions. The main

algorithmic and computational strategies in the framework presented in this dissertation

are based on well known and well established data structure used in Electronic Design

and Automation area. The content of the document is arranged as follows:

Chapter 3 of this work deals with the problem of storing the DNA sequences

compactly and decreasing the search time efficiently for exact search procedure. That is

to provide algorithms, those report all sub-strings (their positions) that match the

search-string S exactly. In this chapter novel binary function based encoding scheme for

compact DNA sequence storage and search strings are presented. Very fast algorithms for

exact search procedures are presented which operate on one of the encoded and stored

DNA sequence. The encoding schemes and search procedures make use of parallel

merging techniques which is very first. Experimental results section of this chapter proves

these facts. The preliminary work of this chapter is published in 2011 ISCA conference of

Bioinformatics and Computational Biology [44] and part of the advanced version of this

work is published in Journal of Emerging Technologies in Computing [46]. A part of this
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chapter is also published as a part of the paper in 2012 ISCA conference of Bioinformatics

and Computational Biology [45].

Chapter 4 presents a scalable approximate search method on one of the compactly

stored DNA sequences. That is to provide algorithms, those report all sub-strings (their

positions) that match S with a mismatch score less than a pre-specified value, K. First

an algorithm for approximate search procedure is developed for relatively shorter search

strings and then a generalized approximate search algorithm for very long search strings

are developed and presented in this chapter. Part of the Chapter 4 is published in Journal

of Emerging Technologies in Computing [46].

Chapter 5 introduces a novel function based method to handle all possible

rearrangements such as transposition operations in genomes efficiently and to store each

rearranged gene sequences (chromosomes) in a very efficient data structure to construct

the evolutionary graph structure. The approach presented in this chapter develops

algorithms to transform the gene sequences to Boolean functions and stores them in the

canonical data structure. The algorithm presented in this chapter for genome

rearrangements does the rearrangement operations in parallel for the evolutionary

processes such as transposition of multiple Genomes. There are also algorithms proposed

for operators to find the history of a particular gene sequence. The experimental results

section of this chapter shows that chromosomes from multiple Genomes can be rearranged

and stored using transposition methods in polynomial time.

All the algorithms developed in this dissertation use binary functions and their

representation on a very efficient data structure called the Binary Decision Diagrams

(BDDs). The search algorithms uses built-in logical BDD operators. The time complexity

of each operator is polynomial to the size of BDD. Chapter 5 elaborates on BDDs.

Concluding remarks are presented in Chapter 6.

3
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CHAPTER 2

BINARY DECISION DIAGRAMS FOR BOOLEAN FUNCTIONS

A Boolean function F consists of n binary variables (x1,...,xn), where each xi has a binary

value either 0 or 1. Given an assignment of binary values to each xi, a boolean function

evaluates either to 0 or 1. Given a function F(x1,...,xn), a product of all its variables in

negative or positive polarity and which evaluates the function to 1 is called a minterm.

When the product evaluates the function to 0, it is called an offset minterm. A product

of variables, which does not necessarily include all variables, is called a cube. The

variables that are not present in the cube are called the Don’t care variables. These are

the sets of input variables for which the output does not change in the function.

One of the many representations of Boolean function is in a tabular form and is called

truth table. An explicit listing of all the minterms of the function is provided in its truth

table. In the truth table, each element xi of the domain has a row of the table listing the

domain element xi and the corresponding function value f(x). The truth table is a

canonical form for representing a function. BDD is a very compressed form of truth table.

An example of a Boolean function F = x′1x2x3 + x1x2 in the form of truth table, binary

tree and binary decision diagram is given in Figure 2.1. One example of a minterm of

the function is the product of variables x′1x2x3 that evaluates the function to be 1. In the

Function F, x1x2 is a cube where x3 is a don′tcare variable.

Reduced Ordered Binary Decision Diagrams (ROBDDs) which are called BDDs in short

are directed acyclic graph data structures and are widely used to represent Boolean

functions compactly and uniquely. BDDs were first introduced by Akers [14] and further

developed by Bryant [18]. The state-of-the-art data structure have gained wide spread

application because of their compact canonical representation and efficient manipulation.

A BDD has two terminal nodes labeled as 0 and 1 and many non-terminal internal nodes

known as decision nodes. A BDD of a function F represents the function as rooted

4
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(b) Binary Decision Diagram

Figure 2.1. The Truth table and the BDD for F = x′1x2x3 + x1x2

acyclic graph. Each non-terminal node N is represented by a variable v and its two edges

directed towards two successor nodes: the “Then” (T ) or true edge and the “Else” (E)

or false edge. Each path from the root to sink-1 (or sink-0) gives a true (or false) output

of the represented function. A level of a BDD of function F (x1..xn) is a set containing all

non-terminal nodes labeled with one particular variable xi. A BDD is called ordered if

the label of each internal node has a lower index than the label of its child-nodes. Being

canonical, each BDD node represents a unique function. In Figure 2.1, true edges are

shown as solid lines, and the false edges are shown as dotted lines. Logical operations on

Boolean formulae, such as AND, OR, and XOR are performed in time polynomial to the

size of the BDD graph. They are implemented efficiently because BDD is a canonical

form for function representation. Since it is a canonical form, redundant nodes of the

graph are eliminated and equivalent sub-trees are shared. Several BDD packages exist.

We use the CUDD package [11].

The performance of function manipulation in any existing BDD package is boosted by the

caching principles. A cache is where intermediate computation results are stored for

5
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future reuse. In addition, all BDD packages use built-in operators which are fundamental

function manipulation algorithms. These operators are used as subroutines for more

complex algorithms on the stored functions. Each BDD package has its own set of BDD

operators, whose time complexity is typically a lower order polynomial time function of

the number of the nodes in the BDD graph. The CUDD built-in operators used by the

developed algorithms are outlined as follows.

The built-in logical operations such as logical AND (Cudd bddAnd [11]), logical OR

(Cudd bddOr [11]), logical co-factoring(Cudd bddCofactor [11]) with respect to a

variable etc. are used in the proposed algorithms. These are recursive procedures and

hence very fast.

The logical AND of two functions f and g that produces a value of true if and only if both

of its operands are true. Similarly, the logical OR of two functions f and g, that produces

a value of false if and only if both of its operands are false. The logical cofactor of a

function f (x1, x2, ...., xi,..., xn) with respect to variable xi is fxi = f (x1, x2, ...., 1,...,

xn) and cofactor of f with respect to variable xi’ is fxi’ = f (x1, x2, ...., 0,..., xn). Detail

explanation of the implementation of one of the BDD operators (Cudd bddAnd [11]) is

considered in next few paragraphs.

Let us examine in detail the special case that computes the conjunction (AND) of two

BDDs. The pseudo code of AND operation is shown in Algorithm 1 [11]. All Boolean

operations of two operands can be computed efficiently by the procedures that also

compute the conjunction (AND) and other operations. This efficient approach is followed

in many CUDD packages and the proposed approach uses the CUDD package by [11].

Algorithm 1 [11] employs two major data structures, one is the unique table and the

other one is the computed table. The unique table is used to guarantee that a specific

node is unique. If two nodes contain the same children and represent the same variable,

they should be merged into one node. The computed table stores results of previous

computation so that repeated computation are avoided. All these tasks require constant

6
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time. If none of them prevails the computed table is consulted. The order of the operands

is immaterial because conjunction is commutative. If the computed table lookup fails to

return a result, the procedure solves the problem recursively (as shown in Algorithm 1).

This algorithm first checks if terminal node has reached or else if the computed table

already has an entry then it returns the result (see line 1-6). If these are not the case then

it computes the then and else children of the resultant function by applying the AND

procedure recursively (see line 7-10). In Algorithm 1, fx and gx are the then children of

f and g respectively. Similarly f ′x and g′x are the else children of f and g respectively.

Once the resultant function is found the algorithm inserts that to unique table and

returns the result (see line 12-16). The following example explains the Cudd bddAnd

operation of two functions f and g.

Consider functions f and g of the figure. The computation of h = Cudd bddAnd(f , g)

proceeds as in Example 1. The BDD of two functions f and g and the BDD of resulting

function h are given in Figure 2.2.

Example 1: AND(f, g) = (a,AND(p, t), AND(q′, 0))

= (a(b, AND(1, 1), AND(0, u′)), AND(q′, 0)

= (a, (b, 1, 0), 0)

= (a, p, 0)unique table lookup

In the above example the procedure first computes the then and else child by applying

the AND operation recursively with respect to the first variable a. AND(p, t) computes

the AND of then children of f and g and AND(q′, 0) computes else children of f and g.

Then the same procedure was followed recursively with respect to variable b for

corresponding children nodes (see line 2 of Example 1). As it can be seen from the figure,

since AND(1, 1) is 1, and AND(0, u′) and AND(q′, 0) are 0, this leads to

(a, (b, 1, 0), 0)(see line 3 of Example 1). Then before creating the node (b,1,0) the

procedure looks up the unique table. In this case the node is already part of f . Therefore,

of the three nodes of h(two internal plus one terminal node), only one needs to be created.

7
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a

b

c

d

f g h

1

q t p

r u

s

Figure 2.2. BDDs of a Cudd bddAnd operation [11]

The time complexity of procedure AND (conjunction) between two functions f and g is

established by observing that each pair of nodes u in f and v in g is examined at most

four times (due to paths with different complementary parity reaching u and v). The

recursion implementation of AND built-in operation requires O(|f |.|g|) time, where |f | is

the number of nodes in f and |g| is the number of nodes in g. However, because of the

computed table, the recursion process is accelerated tremendously. This is the

fundamental principle in implementing AND recursively. Each new result is stored in an

entry of the table determined by computing a hash function. Each entry holds exactly

one result and every conflict, results in the eviction of older result. The efficiency of such

recursion implementations in BDD-based algorithms in electronic design automation is

described in [36], [10] [25], among others. The time complexity of OR is also in

8
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O(|f |.|g|). This operation is also implemented recursively, and is very similar to AND.

Another important built-in operation which is used in our algorithms is the computation

of the co-factoring (Cudd bddCofactor [11]) of a function with respect to one of its input

variable or a function. Using this operator, cofactor of a BDD with respect to any node is

efficiently computed using simple recursion. The time complexity of this operation

depends on the number of nodes at each level and number of levels to be traversed. If the

variable with respect to which the co-factoring is done is at the top then it takes less time

than if it is towards the terminal node. Hence time complexity of each

Cudd bddCofactor operation is O(logx ni nj), where x is the number of level traversed,

ni and nj are the number of nodes at each level for each function.

Yet another built-in function called Cudd bddclosestCube [11] is used in Algorithm 7 in

Section 4.3. It finds a cube of input function F at a minimum Hamming distance K from

the minterms of another function G. It invokes three sub-functions called

cuddBddClosestcube ,separateCube and CuddAddBddDoPattern which are described in

the following paragraph.

Sub-function CuddBddClosestcube performs the recursive step of the function

Cudd bddclosestCube to compute the distance of each cube of F to all the minterms of

G, and represent this cube with distance as a single Algebraic Decision Diagram (ADD).

The ADD which is a multi-terminal BDD represents a function from a factored Boolean

domain to a real-valued range as a directed acyclic graph. It is a decision tree with

re-convergent branches and real-valued terminal nodes. ADDs like BDDs enforce a strict

variable ordering on the decisions from the root to the terminal node, enabling a minimal,

canonical diagram to be produced for a given function. Thus, two identical functions will

always have identical ADD representations under the same variable ordering. For detail

information on ADD, Colorado University Decision Diagram Package [11] can be referred.

Sub-function cuddBddClosestcube returns the cube at a hamming distance K or less, if

successful; NULL otherwise. It calculates the Hamming distance as a side effect.

9



www.manaraa.com

Sub-function cuddBddClosestcube uses a four-way recursion to examine all four

combinations of cofactors of functions f and g according to the following formula [11] in

Equation 1 and hence they are very fast.

H(f, g) = min {H(ft,gt), H(fe,ge), H(ft,ge)+1, H(fe,gt)+1 } (1).

Let ft and fe denote the Then and the Else function of f , and gt and ge denote Then

and Else functions of function g at one particular level. cuddBddClosestcube works on

two BDDs by traversing and comparing between Then and Else functions of each node at

each level as stated in the equation 1. It is computed recursively which returns Hamming

distance by examining the four combinations of cofactors of two input function F and Fs.

Once the distance is calculated the distance and cube are combined to form ADD

(Algebraic Decision Diagram).

In the next step of the function Cudd bddclosestCube another sub-function separateCube

is called to separate the cube from the distance and returns the cube of minimum

distance.The sub function separateCube finds out which branch of the ADD points to the

distance and replaces the top node of that branch with one pointing to zero instead.

Therefore we are left with the only cube that points to distance.

Finally in Cudd bddclosestCube, the cube is converted from ADD to BDD by using

another built-in sub-function CuddAddBddDoPattern. This is a procedure to create a

BDD by replacing all ADD terminals which are greater than K with ′0′ and rest with ′1′

This is a recursive procedure that converts a ADD to BDD and returns a pointer to the

resulting BDD if successful, NULL otherwise.

The following focuses on time complexity analysis of Cudd bddclosestCube. Let, K be

the input distance and Nn and Mm denote the number of nodes in the BDD

representation of both functions. The upper bound of the distance is used as the bound of

the depth of the recursion. Hence time complexity increases with increasing hamming

distance. The overall time complexity of Cudd bddclosestCube is O(KNnMm).

Another important built-in operation which is used in our algorithms is a swap function

10
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called Cudd bddSwapVariables [11]. This function swaps two sets of variables of the same

size (x and y) in the BDD of a function f.
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Figure 2.3. Example of Gene Swap In a BDD
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Algorithm 1: Conjunction Algorithm AND(f ,g) [11]

Input: Functions f and g.

Output: AND result of f and g.

1 AND (f,g);

2 if terminal case then

3 return result;

4 end

5 if computed table has entry{f g} then

6 return result;

7 else

8 let x be the first variable of {f g}

9 t = AND(fx, gx);

10 e = AND(f ′x, g′x);

11 end

12 if t = e then

13 return r =t ;

14 end

15 r = FindOrAddUniqueTable(x,t,e);

16 insertComputedTable({f ,g},r)

17 return r;

12
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Example 2: The BDD presented in the left side of Figure 2.3 has a permutation l0l1l2.

The right side of this figure depicts the permuted BDD of the same function. In order to

swap level l1 with l2 we have to change the permutation to l0l2l1. Hence one has to apply

the swapping routine described in In Algorithm 11 to all nodes at level l1. In this

particular example there is one node in level l1 and are two nodes in level l2, but the

affected node is n1 . Using cofactoring it can be represented as n1 = (l1, n2, n3). We can

rewrite the equation for node n1 as

n1 = l1(l2, 1, 0)(l2, 0, 1).

From swapping procedure above we know that the resulting new node is

n′1 = l2(l1, 1, 0)(l1, 0, 1) which can be written as n′1 = (l2, n
′
2, n

′
3). In this case n3 stays

unchanged, because it directly points to terminal nodes and can be explained as follows:

n3 = (l2, 0, 1)

After Swapping:

n3 = (l1, 0, 1)

Swapping variables does not change the functionality of the original function.

The Swap operation is a local operation and only involves the number of nodes that are

in the two levels that are to be swapped. Hence this is a linear operation and

proportional to the number of nodes involved in the swapping. Space taken during swap

is only due to temporary node creations during SWAP procedure. In a symmetric

function the overall number of nodes does not change.

13
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CHAPTER 3

DNA SEQUENCE STORAGE AND EXACT SEARCH PROCEDURES TO

IDENTIFY A DNA STRING

3.1 INTRODUCTION

The continuous growth in biological data lengthens the search procedure. This makes it

essential for researchers to work on improving both data storage and timing factor of

search process. All the biological data are stored in huge databases where space is not a

concern. Databases are normally too large to fit into the main memory of a computer.

The data of a database resides in secondary memory, generally on one or more magnetic

disks. However, to execute queries or modifications on data, the data must be transferred

to main memory for processing and then transferred back to disk for persistent storage.

These procedures take a lot of time. For faster data processing, data structures are ideal.

Although data structures are more efficient for accessing data than external databases,

memory problems could occur if they are not built efficiently and compactly.

The algorithms proposed here are centered on a very efficient data structure called Binary

Decision Diagrams (BDDs). The presented algorithms in the paper are developed to

generate state of the art tool sets for very fast search process and efficient storage of

biological sequences similar to the algorithms developed for design, verification and test

automation technologies of digital VLSI circuits. BDDs are used extensively in Electronic

Design and Test Automation; see [27, 21, 36, 10, 25] among others.

A pattern search or a string search is for finding the occurrences of a particular sub-string

(or multiple sub-strings) of a DNA or protein sequence within a large DNA/Protein

sequence. In molecular biology, there are several databases holding DNA, RNA and

amino acid strings that are continuously growing. Therefore, there is a need of very fast

and scalable string matching algorithms to find the patterns quickly and efficiently. The

key challenges are (a) how to manage the huge biological data in a compact manner (b)

14
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how to provide a fast access of information through pattern search.

String search or pattern matching algorithms can be exact or approximate. In exact

pattern matching the input is a DNA sequence of N bases (usually called text in

literature) and a search-string (also called pattern or query string in literature) S of M

bases. The goal is to identify all the sub-strings in the DNA sequence that are identical to

the search-string S, and for each such sub-string to report its position within the DNA.

i.e., the base number of the first base in the sub-strings.

Example 1: Let’s consider the DNA sequence D = AGCGCGAGCG and sub-string

S = AGCG. In this case N = 10 and M = 4, respectively. There are two sub-strings in

the DNA that match S. They are highlighted in bold font, and their positions are 1 and 7

respectively.

String search has many applications; the main applications of proposed algorithms are

geared towards the retrieval of biological sequences for which storage and analysis are

challenging algorithmic problems. The proposed methods can be applied in other

biological sub problems such as: sequence alignments (global alignments [39], local

alignments [63], alignment of similar strings); computing the Longest Common

Sub-sequences, finding exact motifs [64] etc.

The objective of this chapter is to store the DNA sequences compactly and decrease the

search time efficiently for exact search procedure. That is to provide algorithms, those

report all sub-strings (their positions) that match S exactly.

This chapter presents two methods for preprocessing the database and storing DNA

sequence in a compact data structure. Although this approach can be applicable to any

type of sequence database and string search, but this case is aimed for applications on

DNA. The proposed approach concentrates on the offline version of DNA string matching

case where DNA sequence stays unchanged for searches with different search-string, and

we have the whole sequence available before the searches. Such a sequence can first be

preprocessed into a suitable form that makes the subsequent searches faster. Hence we
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propose algorithms for preprocessing of the DNA sequence and the associated algorithms

to search for exact occurrences of search-strings with an upper bound in one of the data

structures developed for preprocessed sequence.

3.2 BACKGROUND AND RELATED WORK

There are several versions of the methods for both exact and approximate search

procedure, where the pattern is preprocessed but the text is not [37, 4, 9]. Their

complexity varies from O((K + LogM)N/M) to O(MN). When they are operating

directly on the database, they are called online version. Such approaches are slow when

they are operating on very large strings. Offline versions are more suitable for large string

searches where typically a data structure is built prior to any string searches. Examples

of offline methods can be found in the literature [47, 22, 23, 30, 7] among others.

In index based searching, some kind of index is built and used to locate the exact

occurrences of the selected pattern pieces. There are basically four different data

structures used in literature for indexing method [7]. Suffix trees allow searching for

any sub-string of the text. Suffix arrays allow same operation but are slower.

Q− grams and Q− samples consider searches for text sub-strings no longer than Q. The

proposed method also searches for sub-strings no longer than an upper bound.

The indexing method used for exact pattern search proposed in [30] constructs index

table for the whole DNA sequence for exact pattern matching for multiple strings.

However search time for very large DNA sequences are not reported in [30]. A more

generalized version of exact matching is reported in [23] using suffix arrays. A sparse

suffix array is used as underlying data structure for the storage of DNA sequences in this

method. The method proposed in [23] finds maximal exact matches in large sequence

data. A maximal exact match (MEM) is defined as a match between two sequences that

can’t be extended in either direction towards the end or beginning of the sequences

without introducing a mismatch.
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Although suffix arrays are more space-preserving than suffix trees, they still require large

memory space for indexing massive data such as the whole genome of a human. The

space consumption of an ordinary suffix array for a given DNA sequence of N characters

is O(NlogN). The occurrences of a sub-string of length M characters can be found in

O(MlogN) time by searching the pattern on the suffix array by binary search procedure.

There are several attempts to reduce the space of the suffix trees or arrays [6] [3] [48].

They built a data structure for the index. Then to answer queries they need both text as

well as the index. Hence extra space is still required. The space and time performance of

proposed method is compared to an index based method developed by [43] which uses a

suffix tree. This method only indexes beginning of blocks produced by Ziv-lempel

compression. The general idea of Ziv-lempel compression is to replace sub-strings in the

text by a pointer to a previous occurrence of them. This type of compression algorithm is

based on a dictionary of blocks. As each new block computed it is added to the

dictionary. Two data structures (LZtrie and RevTrie) are created using blocks of text.

Then pattern search is done by finding the occurrence in a single block or in two blocks or

more than two blocks.

The size bottleneck of suffix trees has made the research turn into looking for more

space-economic variants of suffix trees. One popular alternative is the suffix array

[Manber and Myers 1993]. It basically removes the constant factor of suffix trees to 1, as

what remains from suffix trees is a lexicographically ordered array of starting positions of

suffixes in the text that occupies nlogn bits. Many tasks on suffix trees can be simulated

by log n factor slowdown using suffix arrays. With three additional tables, suffix arrays

can be enhanced to support typical suffix tree operations without any slowdown

[Abouelhoda et al. 2004]. However the most space efficient suffix tree occupies 25GB

main memory, hence needs to reside in the disk.

Many existing methods reduce the search space using matching statistics. Such

approaches return a subset of matching sub-strings as opposed to the proposed method
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which precisely returns all the matching sub-strings. BLAST [39] and FASTA [40] are

some of such fast search engines which do not ensure that all matching sub-strings will be

found. BLAST is a widely used search tool to find best local alignments. This is a

heuristic approach based on Smith-Waterman [35] algorithm. BLAST uses a strategy

which is expected to find most matches, but sacrifices on the accuracy of the DNA

position that matches the input string in order to gain speed. Sequences are filtered to

remove low complexity regions. It finds W consecutive bases of the query string that

match exactly to the database sequence (this is also called seed). Once an exact

word-match is found between the query sequence and a database sequence, the

comparison between the two sequences is extended towards left side and right side to

obtain the final alignment. Increasing seed W results in a decrease of sensitivity while

decreasing W results in too many random matches. Another statistical parameter that

signifies the BLAST search is the expectation value E which is defined as the number of

matches expected to occur randomly with a given score. The smaller the E value, the

more likely the match to be significant. BLAST typically runs on NCBI database.

However there is a version where one can set up sequence database on a computer and

run blast queries. This is called Local BLAST. The default value of E for BLASTn (tool

version of searching the nucleotide database) is 10. The proposed method is also

compared against BLAST for time performance and actual number of occurrences of the

search strings.

The methods proposed in [13] use weighted indexing procedures and use R-tree data

structure for both exact and approximate pattern search. These methods are called the

Basic Signature Index (BSI) and the Weighted Signature Index (WSI) methods

respectively. These methods also use a filtering method to reduce the search space. In

each of these methods a sliding window is placed at every possible location of a DNA

sequence to extract its signature by considering the occurrence frequency of each DNA

base. Then it stores a set of signatures using index based R-tree data structure, and
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assigns a weight to each position of the window. It tries to scatter the signature over

indexing space and tries to reduce the space. Then the query sequence is converted to

multidimensional rectangle and looks for the overlapping signatures.

This R-tree based method presents a better performance in search procedures for exact

matches as compared to suffix trees which has time complexity O(M + k), where M is

search-string length and k is number of occurrences.

There are two methods presented in this chapter to store DNA sequences. These methods

target to generate and store DNA sequence implicitly which will enhance the future

search technique in this sequence. We propose two DNA encoding schemes and

generation techniques that are not only very fast and space efficient but also will enhance

the future search performance. An algorithm for search string generation technique is also

presented here which will operate on one of the developed data structure for DNA

storage. Subsequently we have also presented two Algorithms for exact search procedure.

3.3 FUNCTION BASED APPROACH FOR PATTERN SEARCH

3.3.1 Position Specific Method for Generation of DNA Functions from DNA

Sequences

In this proposed method, an input DNA sequence is converted to a Boolean function

called the DNA function F . The number of variables in the minterms of these functions is

calculated from the size (upper bound) of the search-string. Any sub-string of size upto L

can be searched in this DNA sequence. Similarly, j number of sub-strings with an upper

bound of L can also be searched in this DNA sequence. Hence each minterm of the DNA

function corresponds to a DNA string of size L within the sequence where L is the

maximum size for that string sequence in the DNA. These minterms also contain some

additional variables called the position bits. During a search, the position bits are used to

report the positions of matched strings in the DNA sequence.
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The number of bits (or variables) in each minterm of the Boolean function is determined

as follows: Each base is represented by two bits as shown in Table 1. Thus, there are twice

as many such bits as the upper bound of the search-string size. For example, if the upper

bound of a DNA search-string consists of 20 bases, then each minterm has 40 bits. Such

bits are called variable bits. Then the additional position bits (besides the variable bits)

are calculated from the length of the DNA sequence. The number of minterms present in

the function also depends on the length of the DNA sequence and the upper bound of the

search-string. Let N be the length of the DNA sequence in number of bases and the

upper bound of search-string is L. Then the number of minterms in the DNA function is

Mn = N − L + 1. The number of variable bits in each minterm is d log2(2L)e and the

number of position bits are found out from the formula d log2 (Mn)e. Then each of them

is represented in binary form. For example a 4 - bit binary representation of decimal 10 is

1010. The proposed algorithm Function-Generate (Algorithm 2) generates, stores and

manipulates function using BDDs which are canonical form for representing functions.

Table 3.1. DNA Encoding.

DNA Bases Binary Value

A 00

G 01

C 10

T 11

The approach consists of two parts. The first part is a parser that transforms a

conventional DNA string in to a function (see Algorithm 2). This algorithm is inherently

linear to the size of the DNA. Once the DNA function is formed, searches for a DNA

string are done very quickly, in time that depends on the number of the nodes in the
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BDD. The number of nodes is much less than the length of the DNA. The string search

process is also experimentally shown to exhibit sub-linear behavior. Therefore this

approach is expected to perform very fast.

Algorithm Function-Generate which is given in Algorithm 2 transforms the DNA

sequence into binary strings, using two bits per base as in Table 3.1. Procedure Generate

Mi = (m0m1......m2L−1b0...bk−1) creates first part (base part of each minterm) as well as

the position part of Mi of the DNA function (see line 5 of Algorithm 2). It uses 2L

variables, m0m1......m2L−1, one binary variable per bit in the first part of the minterm Mi.

Basically, each Mi is a single minterm function where literals mj, for 0 ≤j ≤ 2L -1 and

bf , 0 ≤f ≤ k-1, are set according to the respective bit value in the encoded DNA string.

This procedure is implemented efficiently using built-in function Cudd bddAnd from the

BDD package. Once minterms Mi are generated, they are stored in function F using

another built- in operation Cudd bddOr. This is shown in procedure CreateFunction of

Algorithm Function-Generate (See line 6 of Algorithm 2). Such an implementation

requires time linear to the BDD size (the number of nodes in a BDD), which in practice,

is much smaller than the size of DNA sequence. Hence the time complexity of

Function-Generate is linear to the size of the DNA sequence. The following example

illustrates the encoding process and DNA function generation.

Example 2: Let us consider a DNA sequence, D = {AGCGGTCGCGTGCG}. Each

base is encoded using 2 bits (See Table 3.1). Hence the DNA sequence of length 14 is

encoded to 28 bits as shown in Figure 3.1. Similarly, let us consider a search-string

S = {AGCG} and it is encoded to 00011001 using Table 3.1. The number of bases in the

search-string, which is also the size of the search-string is 4. Therefore, there are

14− (4− 1) = 11 minterms in the DNA function. Since the upper bound of the

search-string is 4, there are 4 bases or 8 variables in each minterm. The first part of each

minterm,(also called base part) consists of 8 bits. The second part of each minterm

contains position bits and for this example it is d log2 (11)e = 4. The first minterm is
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encoded from the 1st sub-string (AGCG) which is in position 0. The minterm is

000110010000. The base part is 00011001 and the second part (position bits) is 0000. The

next minterm is created from the next sub-string GCGG using same methodology, as

shown in Figure 3.6.

00 01 10 01 01 11 10 01 10 01 11 01 10 01

A G C G G T C G C G T G C G

Figure 3.1. Encoding of a DNA Sequence
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D = AGCGGTCGCGTGCG
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Figure 3.2. Minterms of a DNA Function

The BDD of a DNA function D = AGCGGTCGCGTGCG, generated by Algorithm 2 is

given in Figure 3.3. The first eight nodes represent base part for each minterm of the

DNA function and last set of nodes represent the position bits. This is a very compact

graph where only one literal has two nodes. Function String-Generate in Algorithm 4 is
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Algorithm 2: Function-Generate

Input: DNA sequence D and Upper bound (L) of search-string S

Output: BDD of DNA function(F )

1 Let k = d log2(N − L + 1) e;

2 F = 0 ( the empty function);

3 / * Encoding DNA sequence (D)

4 for each i = 0 until N − L + 1 do

5 Generate Mi = Cudd bddAnd(m0m1...m2L−1b0...bk−1) / * Built-in BDD

operator

6 Create Function F = Cudd bddOr(F,Mi); / * Built-in BDD operator

7 end

8 Report F ;

used to generate another BDD graph for string function from search-string, S : AGCG as

shown in Figure 3.4. The nodes in the BDD graph of the string, S = AGCG represent

the bits encoded from the base part. There are no position bits in the string function.

The reason for this transformation is that the problem of string search will reduce to a

fast Boolean function manipulation problem as shown in Section 3.3.3
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Figure 3.3. The BDD for a DNA Sequence D=AGCGCGAGCG
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Figure 3.4. BDD for a Search-String S=AGCG

The following describes the time complexity of Algorithm 2 that generates the DNA

function F . Let, Nn be the maximum number of nodes in the BDD that holds F . The
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generation is done by successively ORing (using Cudd bddOr) a string of L + logN

variables, where N is the size of the reference DNA sequence and L is the maximum size

of sub-string. This is done in O(N − L) times, because we have to traverse the DNA

string. The ORing process is proportional to the number of nodes in the resultant BDD

of the functions. The time complexity of each iteration is O (L + logN) . Hence the time

complexity of this algorithm is (Nn (L + logN))+ N .

Function generation is an inherently parallelization task, and thus scalable. One can use

P processors to convert distinct portions of the DNA sequence in to separate functions.

The number of processors depends on the time the user is willing to spend on the

execution of Function-Generate. The ith processor, 0 ≤ i ≤ P , works on the ith portion of

the DNA string, and generates its BDD function using additional b bits adding at the

beginning of the k b-bits for each minterm in its function. In particular, logP more such

bits will be used at the second part of each minterm in the function, and will form a logP

bit-long most significant portion in the b-part of each minterm. These extra bits should

be assigned binary values uniformly so that the decimal equivalent of logP bit, most

significant part for each minterm in the function of processor i is exactly i. Once the

functions are formed, each odd numbered processor sends its function to its adjacent even

numbered processor which ORs the two functions.That way the number of functions has

been halved. This process is repeated recursively by only focusing on the processor that

have formed the new functions. The process terminates in logP steps, each time

performing an OR operation in parallel.

3.3.2 Encoding Process and Function Generation for DNA with Implicit

Base Positions

The DNA sequence can be encoded into binary string by employing the encoding scheme

as shown in Table3.1. Subsequently, a boolean function is generated from this binary

string, which is called DNA function F . Every bit in the binary string is a minterm in
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function F either in the on-set or in the off-set of F , as tabulated in the truth table of

Figure 3.5.

The illustration of this process is given with an example.

Example 3:

To illustrate, consider a DNA sequence D = GGGT of length L. As we scan through the

DNA sequence D, the encoded binary bits(using the encoding table) in D are 01010111.

The encoded binary bits from the DNA sequence is shown in Figure 3.6. In this case,

each of both the onset and offset minterms of F represents an individual base bit.

Algorithm 3 generalizes this process. The number of variables n in the minterms of the

function F can be calculated from the equation L= 2n.

Hence n = logL/log2

As we scan through this DNA sequence, we compute minterms m0 and m1 which

corresponds to base G. Since base G is encoded as 01, m0 is offset and m1 is onset

minterms in F . BDD operator Cudd bddComputeCube is used to compute the minterms

which takes constant time. This process is repeated for every subsequent base in DNA

sequence. For each such base, minterms are computed and included in function F by

using BDD operator Cudd bddOR. This way a BDD is constructed from these built in

operators.

The Advantages of the proposed encoding algorithm is as follows: (a) The proposed

method will only form one function per DNA sequence and will allow for multiple quick

searches on the function for different string sizes.

(b) This method is much more compact, because it does not have any positional variables,

instead the minterms of the function generated serve as the positions of the DNA bases.

(c)This particular encoding scheme can be used to generate any random function. The

construction method of a random function does not necessarily require that we parse an

input DNA sequence and this can save time. This in turn implies that in order to

evaluate the capacity limitations of the data structure, one has to input very large DNA

27



www.manaraa.com

Algorithm 3: Simple-DNA Function-Generation

Input: DNA sequence (D)

Output: DNA Function (F)

1: Calculate Number of variables (n)

2: Determine the number of minterms (Mn)

3: Initialize the function (F )

4: Initialize a variable k = 0)

5: / * set elementary BDDs corresponding to variables */

6: for i = 1 until Mn do

7: if D[i] = ’A’ then

8: Go to next base

9: else if D[i] = ’G’ then

10: next minterm = Cudd bddComputeCube()

11: /* Generate minterm from i+k+1 value and number of variables */

12: function F = Cudd bddOR (F ,next minterm)

13: / * Built-in BDD operator to create function F

14: else if D[i] = ’C’ then

15: minterm = Cudd bddComputeCube () /* Generate minterm from i+k Value and

number of variables*/

16: function F = Cudd bddOR (F ,minterm) / * Built-in BDD operator
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Algorithm 3: Simple-DNA Function-Generation continued

17: else if D[i] = ’T’ then

18: minterm = Cudd bddComputeCube () /* Generate minterm from i+k Value and

number of variables*/

19: next minterm = Cudd bddComputeCube ()

20: /* Generate minterm from i+k+1 Value and number of variables*/

21: function F = Cudd bddOR (F ,minterm) / * Built-in BDD operator

22: function F = Cudd bddOR (F ,next minterm) / * Built-in BDD operator

23: else

24: Not a valid base;

25: k = k + 1;

26: end if

27: end for

28: Report BDD of function F ;
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sequences which is a very time consuming task. In contrast, the capacity limitations of

the proposed data structure can be evaluated quickly using huge synthetic DNA

sequences that can be generated very fast in an implicit manner to the length of the

resulting sequence. It is only required to explicitly read a small DNA sequence and

successive Oring it quickly to form large DNA sequences. It’s also a parallelization task

and can be done as mentioned in Section 3.3.1.

(d) Even if the positions of the DNA bases in this encoding scheme is not explicitly

specified, a quick search can be done to access the positions using Cudd PrintMinterm

function from the CUDD package. This function operates in constant time.

0
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0 1

The BDD(b)

F = ab+ab’c+a’c

Figure 3.5. The truth table and the BDD for F = ab + ab′c + a′c
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Figure 3.6. Encoding Process of DNA Bases

Scanning through the DNA sequence and encoding will always take the time O(n), where

n is the number bases in a DNA sequence. Hence construction time is proportional to the

number of bases in the DNA sequence. However the Algorithm is very space preserving.

For example in order to store a sequence of base length 4 of a DNA sequence we need at

most 8 minterms. Because of binary encoding scheme we only need 3 variables to create

such function. As an example, we can generate a function for DNA sequence size 1012

with the help of about 40 variables. The experimental result section proves this fact.

3.3.3 Algorithms for Exact Pattern Search

A K-mismatch(F , FS) algorithm denotes an algorithm that returns position in the DNA

sequence, where the mismatch to the input string does not exceed number K. This

section presents an exact string-search approach, called the 0-mismatch(F , FS)-basic .

The 0 indicates that the the mismatch is 0 or otherwise, the match is exact.

Algorithm 0-mismatch (F , FS)-basic assumes that the string is represented as a binary

function. This is accomplished in a pre-processing step by procedure Generate

String-Function shown in Algorithm 4 (String-Generate). Algorithm String-Generate

uses similar notion as Function-Generate to encode the search-string S. Let L denote an

upper bound of the string S which is a part of the input description. If the string size is

s < L then the last L− s bits will be considered as a don’t care in the sequence and any

encoding process applies for these bits. Note that the string function FS consists of one
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Algorithm 4: String-Generate

Input: Search-string (S), Upper bound of Search-string(L)

Output: BDD of search-string Function(FS)

1 FS = 0 ;

2 for each i = 0 until 2L-1 do

3 Generate Mi = Cudd bddAnd(m0m1...m2L−1)

4 Generate String-Function FS = Mi

5 end

6 Report FS;

minterm encoded from the entire search-string using Table 1, and has no position bits as

described in Algorithm String-Generate.

In Algorithm 5 is called (0-mismatch(F ,FS)-basic). The input consists of two binary

functions: Function F that represents the DNA sequence is formed by Algorithm

Function−Generate. Function FS is formed by Algorithm String −Generate and

represents the search-string. Initially 0-mismatch forms a binary function T by the

conjunction (AND operation) of functions F and FS(see also step 1 of Algorithm 5).

Using the built-in AND (Cudd bddAnd) operation, all the minterms, whose variable bits

match the string are found. This is done implicitly. This is precisely the benefit of

encoding the DNA sequence and strings, as functions.

Once these minterms are found, their position bits are extracted by using the built-in

procedure Cudd bddCofactor (see also steps 2-4 in Algorithm 5). This is also done

implicitly (another advantage of using functions). Subsequently the number of

appearances of the search-string in the DNA sequence is returned using built-in function

Cudd CountMinterm. If the user is interested in finding that the string exists in the

DNA sequence, Cudd PickOneMinterm operation is invoked. Alternatively, if one wants
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Algorithm 5: 0-mismatch(F ,FS)-basic

Input: DNA Function(F ) from Algorithm 2 and search-string Function(FS)from

Algorithm 4

Output: Number of occurrences of sub string S in DNA sequence D and

position of S in D

1 Generate T(m0m1...m2L−1b0...bk−1)=Cudd bddAnd(F , FS)

2 for each i = 0 until 2L− 1 do

3 P = Cudd bddCofactor(T, mi) / * Built-in BDD operator

4 end

5 Find Positions( Cudd PrintMinterm(P)) / * Built-in BDD operator

6 Find Number of occurrences(Cudd CountMinterm(P)) / * Built-in BDD

operator

to see all the positions, then Cudd PrintMinterm operation is invoked to enumeratively

present all of them. In general, all of the described procedures are built-in BDD operators

where execution time is linear to the number of nodes in the BDD of the DNA function.

The time complexity of the 0-mismatch algorithm experimentally shows to be sub linear

to the DNA sequence size.

The following example demonstrates how the proposed algorithm works.

Example 4: Let us assume that the search-string is AGCG (as in the previous example)

and the DNA sequence D = AGCGGTCGCGTGCG. The following describes the

encoding of each minterm of the function using Algorithm 2.

Step1: The position bits are calculated to be 4. The first minterm has variable bits 00 01

10 01 which correspond to AGCG. The position bits are set to 0000. Likewise, the second

minterm has variable bits 01 10 01 01 which correspond to GCGG. The position bits of
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second minterm are set to 0001. Hence the DNA function F is encoded as F = 00 01 10

01 0000 + 01 10 01 01 0001 + ........

Step 2: Next the search-string is encoded using Algorithm 4 as 00 01 10 01 −−−−.

The position bits for this search string are don’t care bits.

Step 3: Next the string search procedure is done using Algorithm 5. The

Cudd bddAND operation in line 1 of Algorithm 5 returns the function T which has

common the minterms of DNA function, F and string function, Fs. In this case T =

Cudd bddAND(F, Fs) = 00 01 10 01 0000. The position function, P is determined by the

Cudd bddCofactor in line 3 of Algorithm 5. In this example P = 0000. Hence the

sub-string AGCG is at the position 0 in the DNA sequence D. The above is illustrated in

Figure 3.7 with detailed encoding.

0 1
m.m......m

2l − 1
b

0 b1 b k − 1

10 01 01 11 0010+ .......

=

F = 00 01 10 01 0000 + 01 10 01 01 0001 + 

F = 00 01 10 01

F AND F T = 00 01 10 01 0000

.....

the search string its position

s

s

Figure 3.7. Search operation in a DNA Function

Algorithm 4 generates a string function from the search-string that has 2M context

variables, where M is the size of the search-strings in number of bases. The string

function does not have any position variable. This is done by O(M) traversals on the

search-string and at each traversal we create the bits for the minterm. This process takes

O(M) time. This process is very similar to generating DNA function except that the

string function, FS is a single minterm function.
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The proposed Algorithm 5 inherently searches strings in parallel. This is an inherent

property of function based search methods. For example, for any number of search strings

si, the search algorithm can be used to report the matching sub-strings. Once the search

string function Fs is constructed, the search time for multiple strings is practically

identical to the search time for one string.

Example 5:

Step 1: Search string function for 3 search strings s1, s2, s3 is expressed as: Fs =

ms1+ms2+ms3, where ms1,ms2,ms3 are the minterms of search string function generated

from strings s1, s2, s3.

Step 2: Let the DNA function of a DNA sequence which contains all these strings and

other strings is given by Fd = ms1+ms2+ms3 + ms4+ms5+ms6.

Step 3: The resulting function is: Fr= (Cudd bddAND(Fd,Fs)) = ms1+ms2+ms3.

Cudd bddPrintminterm(Fr) will report the minterms, which are the matching strings.

Algorithm 5 does the implicit string search and reports the respective position of

matching strings in DNA sequence D and number of occurrences. Let Mm be the number

of nodes in the BDD that holds the respective string function FS and Nn is the number of

nodes of the BDD that holds respective DNA function F . Let na be the number of nodes

in the resulting BDD. In practice, na may be larger than max {Nn, Mm}. An ANDing of

DNA function, F and string function, FS in line 1 requires O(Mm Nn), which in practice

is O(Nn).

The for loop (lines 2-4) in Algorithm 5 consists of O(k) co- factoring to eliminate all

string variables, where k is the number of position variable. Those co-factoring guarantee

that the resulting function consists of those minterms that matches string S. Every co

factoring takes O(logx ni nj) time where, x is the maximum number of nodes at any level

in the BDD and ni , nj < na. However k is typically LogN and hence the complexity is in

practice O(na LogN). Therefore the overall time complexity is O(na).

When the string size increases the number of variables in string function as well as
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number of variables in the DNA function increases. In order to handle very large

search-strings, Algorithm 0-mismatch(F ,FS)-basic is modified and is called

0-mismatch(F ,FS)-general(See also Algorithm 6). In this approach when the input

search-string exceeds a certain length called threshold length Sth, it is split into multiple

strings of roughly equal size and then multiple search functions are created one per

sub-string from them. The value of Sth is determined and its value has a significant

impact in the performance of the approach. Our experimental results in Section 5.5 show

that value of Sth is around 100 to optimize the performance of the approach. The

minterms of the DNA function are the same size as the minterms of each of these string

functions. The overall search time is calculated by adding the search time for each of

these string function. By proceeding this way, the memory requirement for storing the

output function of each AND operation is significantly less and therefore the overall

search process is significantly faster when comparing to 0-mismatch(F ,FS)-basic that

performs a single AND operation.
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Algorithm 6: 0-mismatch(F ,FS)-general

Input: DNA Function(F ) from Algorithm 2 and Search-string (S):SIZE = X

Output: Number of occurrences of S in D and BDD of search string Function(FS) and

Positions of Matching sub-strings In the DNA sequence D

1: Number of Search function to generate y= d X/s e;

2: let s = optimum size;

3: let string-func-count = 0;

4: St = X − y ;

5: F0 = Cudd bddAnd(m0 m1...ms );

6: T0 =Cudd bddAnd(F ,F0)

7: / * Checking initial conditions

8: if T0 = Null then

9: Print( String not present);

10: Exit;

11: else

12: for each i = 0 until 2L-1 do

13: P0 =Cudd bddCofactor(T0), mi) / * Built-in BDD operator

14: end for

15: end if
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Algorithm 6: 0-mismatch(F ,FS)-general-continued

16: for each j = 1 until y-1 do

17: String-Generate (FSj) ; / * from Algorithm 4

18: Tj = Cudd bddAnd(F ,FSj);

19: for each i = 0 until 2L-1 do

20: Pj=Cudd bddCofactor(Tj, mi);

21: end for

22: end for

23: if Shift(Pi−1,St ) != Pj−1 then

24: exit;

25: else

26: string-func-count ++;

27: j = j++;

28: end if

29: if string-func-count = y -1 then

30: Cudd PrintMinterm (P0) / * Find Positions using Built-in BDD operator

31: Cudd CountMinterm (P0) / * Find Number of occurrences using Built-in BDD

operator

32: end if
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If the threshold length is Sth for search-string is s, a DNA function of minterm size s is

generated. Let us assume that the next search-string is of size 4s. Four string functions

Fs0, Fs1, Fs2 and Fs3 of size s are generated. In case four equal sized functions can not

be formed, then don’t care bits can be used to form the last function. Then the search for

each string function is performed.

Example 5: Consider that the DNA sequence D = AGCTAGCT and search-string

S = AGCT . For simplicity, we will form two search functions from strings AG and CT .

Hence search function Fs0 will be formed from AG and search function Fs1 will be

formed from string CT . Position of search function formed from CT will be shifted by a

number equal to the search-string size minus the number of the search function. Hence if

the position of AG in the DNA sequence is 0 then position of CT will be 0 + (4− 2) = 2.

The shift operation is called Shift(See also line 20 of Algorithm 6). Each shift operation

will increase the minterms of a function by the number St. For example, Shift(P, 2) will

increase the minterms by 2. Where P is a function to be shifted. This shift function is an

implicit procedure which operates on the nodes of the BDD of a graph instead of each

minterm and hence is very fast. For example, if 000 is a minterm of a function p to be

shifted, then applying shift(p,2) will shift the minterm 000 to 010. When the search is

performed this condition is checked in order to find whether the whole string AGCT is

present in the DNA sequence. This enhanced Algorithm for exact pattern search is

described in Algorithm 6. A detailed explanation on algorithm of shift function can be

found in [45] Input to Algorithm 6 is the DNA function from Algorithm 2. It is

assumed that the search-string size is longer than Sth. In Algorithm 6, initialization is

done in lines 1 to 5. If the initial search-string is present, we proceed further or else we

exit (See also lines 7-9). The steps in from line 10 to 20 are similar to string search

Algorithm 5 and are repeated for each of the string function to be generated. Then it is

checked whether the current position is an increment of the previous position (See lines

20 -26). If true, the current string function is generated from the part of the search-string
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so the process continues. If not true, we proceed to the next function generation. Finally,

if all the string functions are present, then the position of initial string function is printed.

Now, let us consider the example, where DNA sequence D = AGCTAGCT and search

string S = AGCT . According to Algorithm 6, search function Fs0 will be formed from

AG and will be encoded as 0001 and search function Fs1 will be formed from CT and will

be encoded as 1011. After all the initial conditions are satisfied, function T0 can be

represented as T0 = 0001000 + 0001100 and hence position function P0 will be

represented as P0 = 000 + 100. Therefore, we proceed with next function Fs1. For

function Fs1 T1 is 0111010 +0111101. Then, we check for the condition shift(Pj, 2) is

equal to (Pj−1). Since shift (000 + 100) = 010 + 101, we continue. Then print P0 (Initial

Position Function) will provide the position of the search-string which are 000 and 100.

Let Mm and Nn be the number of nodes in the BDDs that hold the respective function

Fm and Nn. Let na be the number of nodes in the resulting BDD. The time overhead of

the proposed algorithm is the time to generate the extra search functions and the time to

do each search. When the search-string size goes beyond a predetermined threshold Sth,

we divide the search-strings to form multiple search functions. The number of AND

operations is equal to the number of search functions, which is a small constant. ANDing

(Cudd bddAND) of functions Fn and Fm requires O(Mm Nn), which in practice is O(Nn).

The space complexity of the search algorithms of our approach is proportional to the

number of nodes in the resultant BDDs. The number of nodes of a DNA function are less

than actual number of bases in the DNA sequence, i.e. O(na) � O(N). This is definitely

more compressed than the space of suffix tree approaches that need O(N2) to report all

possible position pairs that correspond to matches.

3.4 EXPERIMENTAL RESULTS

The experiments were performed on large DNA sequences in standard reference sequences

(in FASTA format) downloaded from NCBI [42] databases and on some benchmarks
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associated with the BLAST [39] tool ranging from (10 to 100 Mbps). Large reference

sequences were chosen to evaluate the performance in large data sets. The DNA

sequences downloaded from NCBI [42] databases have their identification number (GI

Numbers) and are stored in a separate file. The sizes of different DNA sequences are

reported in respective tables. The DNA sequences associated with BLAST tool are

identified as GI:6164828 and GI: 308801197. The search process of several sub-strings of

different lengths were done on these DNA sequences for exact search. The proposed

methods (0-mismatch(F , FS)-basic, 0 -mismatch(F , FS)-general were evaluated for a wide

range of search string (query) length and their search time for exact search procedure.

Each of search strings are named as SB-sb, where s is the size of the search string in base.

The modified DNA sequence of size s is denoted as DB − sMB similar to modified

search-string, where s is the size of the DNA sequence and MB denotes mega bases.

The proposed algorithms have been implemented in the C language. Experiments were

performed on the UBUNTU platform having 4GB RAM and with a speed of 3 GHz. This

procedure was repeated for several sub-strings. The proposed exact string search method

was compared with method [43] in terms of time and space performance. The code for

the method proposed in [43] was downloaded from the site provided by the paper and

implemented on the workstation that we used for implementing our algorithms. The

proposed string search methods were also compared with BSI and WSI methods [13] in

terms of time performance. We could not obtain the sources of the implementation of this

index-based method from the authors. Hence we took the same size DNA sequences and

search strings and compared against the results reported by the authors. The experiments

of the proposed method were performed in the workstation having the same configuration

as reported in the methods of [13].

Figure 3.8 provides the size of computer memory (in bytes) needed to store and

corresponding BDD construction time (in millisecond) of a particular DNA sequence

using Algorithm Function-Generate. Since the search process depends on the number of
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nodes in the BDD of a DNA function, the number of nodes of the BDD of corresponding

DNA sequence is also provided in this figure. This figure lists the of space requirement of

a particular DNA sequence. The DNA sequences with their GI numbers are provided in

the X-axis. The Y axis represents the comparison of memory size and BDD construction

time to store a particular sequence with number bases present in that sequence. Note

that the number of nodes and memory size of a BDD of a sequence is significantly less

than the number of bases present in that sequence. This indicates that the storage space

of a DNA function is much less than the DNA sequence itself. Although, the worst case

performance is exponential, this condition never observed after performing so many

experiments. In fact the actual run time is linear in the size of each operand.

Figure 3.8. DNA sequence length in base vs BDD construction time in
millisecond, number of nodes in BDD and memory size in bytes

Table 3.2 tabulates the results and demonstrates the capacity of our data structure which

is capable of storing large DNA bases using Algorithm 3(Simple-DNA

Function-Generation). Column 1 of Table 3.2 indicates the name of different DNA
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Table 3.2. Performance of the data structure for genomes using Algorithm 3

Name of length of - Time to nodes in number of

Genome Sequence (in bases) Construct (in sec) BDD graph variables

Human(GI:338858148) 987716 0.05 26135 20

Human(GI:338858146) 1064303 0.1 80532 25

Human(GI:224514948) 9412842 0.2 140032 25

Synthetic Data1 1048576 0.1 358 20

Synthetic Data2 1073741824 0.2 6309 30

Synthetic Data3 1.09x 1012 2.1 129,389 40

Synthetic Data4 1.15x 1018 4.2 214,505 60

sequences. Some of these data are real DNA sequences from NCBI database and some of

the data marked as synthetic data are generated from the DNA functions of real DNA

function by merging the sequence functions with Cudd bddOr operations. Column 2

provides the length of the DNA sequences in bases, which is being stored in our compact

data structure. It is observed that data structure created in the proposed method has the

capability to store huge DNA sequences as shown in Column 2. The time taken in seconds

to construct our data structure is shown in Column 3. Column 4 displays the number of

nodes in the BDD graph. Column 5 of this result table presents the number of variables in

the DNA function generated from a DNA sequence of size (2variables). As shown in Table

3.2, the proposed method is capable of storing DNA sequence in the order of 1.15x1018.

Table 3.3 provides the time performance comparison of 0-mismatch (F , FS)-basic and

0-mismatch (F , FS)-general with existing approaches [43] [39] [13]based on various
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searches on a 10 Mbps DNA sequence from [42]. The sequence size is chosen for

comparison purpose for the method [43] and [13].

Column 1 of Table 3.3 provides the search-strings of various lengths and Column 2

provides the time to search in second by proposed method. Column 3 provides the search

time for LZ-index method, column 4 and column 5 provide the search time for BSI and

WSI methods respectively. Column 6 provides the search time for BLAST method. As it

can be seen for lower search string length the proposed method outperforms the BLAST

method and LZ-index method. The search time of LZ-index method is comparable to

ours, but we could not go over search string size 60 bps for LZ-index. This could be the

fact that the indices were constructed over 60 bps sequence size. However it can be seen

from the results reported, that the search time for string length 20bps to 60 bps of

LZ-index method increases with the size of search string and higher than proposed

method. The search time for the proposed method is also faster than BLAST and BSI

and WSI. The increase in search time with the search string length is linear.

A comparative study on time performance of 0-mismatch (F , FS)-basic and 0-mismatch

(F , FS)-general procedures vs LZ-index and BLAST [39] is provided in Table 3.4. A

100Mbps DNA sequence was used to compare with BLAST [39] and disk based method of

[43] in Table 3.4. Column 1 of Table 3.4 provides the search-strings of various lengths

and column 2 provides the time to search in second by proposed method. It can be seen

that the search time for these multiple patterns is less than the search time of these

patterns, when the search is done sequentially. The search time for LZ-index method is

provided in Column 4. Column 5 provides the search time for BLAST method.

Table 3.5 elaborates on the multiple pattern search time of the developed method.

Search time of proposed method for 1 pattern of length corresponding to column 1 is

provided in Column 2. Similarly the search time for 10, 100 and 1000 patterns is provided

in Column 3, 4 and 5 respectively. The developed method inherently searches strings in

parallel, hence as shown in this table, the search time for multiple strings is practically
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identical to the search time for one string.

A comparison of the number of positions for exactly matched strings for both BLAST

and proposed method (0-mismatch (F , FS)-basic and 0-mismatch (F , FS)-general) are

provided in Figure 3.9. The X-axis represents the DNA sequences of various sizes from

[42] and the input search-strings used for the search. The Y-axis represents the number of

positions that matched the input string exactly. Often there is no exact match of the

search-strings found in the DNA sequences. Hence the DNA sequences are modified by

inserting search-strings at various positions in order to demonstrate that some positions

that matched the string can be missed by BLAST. These results demonstrate that

BLAST does miss some of the positions.
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Table 3.3. CPU time performance of proposed method vs [43] [13] [39]
in the 10Mbps DNA sequence from [42]

Search-string size Proposed Method LZ-index [43] WSI [13] BSI [13] BLAST [39]

( in base) sec sec sec sec sec

20 0.0000 0.007 N/A N/A 0.010

30 0.0000 0.008 N/A N/A 0.010

40 0.0000 0.009 N/A N/A 0.010

60 0.0000 0.010 N/A N/A 0.010

128 0.0000 N/A 5 5 2.000

256 0.0001 N/A 0.012 0.015 3 .000

512 0.0051(0.0015 a) N/A 0.008 0.012 3 .000

1028 0.01 (0.005 a) N/A 0.011 0.012 4.000

2056 0.050 a N/A N/A N/A 6.000

4112 0.1200 a N/A N/A N/A 7.000

8224 3.00 a N/A N/A N/A 8.000

fragment-1(1347 bps) 0.005 a N/A N/A N/A 4.000

aResults obtained using 0 -mismatch(F , FS)-general
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Table 3.4. CPU time performance of proposed method vs [43] [39] in
the 100Mbps DNA sequence from [42]

Search-string size Proposed Method LZ-index [43] BLAST [39]

(in base) sec sec sec

20 0.0010 0.010 0.210

30 0.0011 0.018 0.210

40 0.0012 0.019 0.210

60 0.0013 0.010 0.210

128 0.015 (0.005 a ) N/A 4.000

256 0.018 a N/A 5 .000

512 0.58 a N/A 7 .000

1028 1.01 a N/A 8 .000

2056 2.050 a N/A 9.000

4112 3.1200 a N/A 10.000

8224 4.00 a N/A 12.000

fragment-1(1347 bps) 1.11 a N/A 7.000

aResults obtained using 0 -mismatch(F , FS)-general
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Table 3.5. CPU time performance for multiple strings of developed
method in the 100Mbps DNA sequence from [42]

Search-string size developed Method developed Method developed Method developed Method

(1 Patterns) (10 Patterns) (100 Patterns) (1000 Patterns)

(in base) sec sec sec sec

20 0.0010 0.0015 0.0016 0.0018

30 0.0011 0.0012 0.0018 0.0020

40 0.0012 0.0021 0.0019 0.0021

60 0.0013 0.0022 0.0024 0.0025

128 0.015 0.023 0.024 0.028

256 0.018 0.025 0.028 0.030

512 0.58 0.65 0.68 0.70

1028 1.01 1.21 1.25 1 .28

2056 2.050 2.150 1.165 2.168

4112 3.120 3.220 3.240 3.280

8224 4.00 4.20 4.25 4.450

fragment-1(1347 bps) 1.11 1.15 1.16 1.210
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Figure 3.9. Number of search-strings reported in different DNA se-
quences using exact search procedure

3.5 CONCLUSION

The presented approach in this chapter uses the function-based method which compactly

stores the biological data. The methods generate and store DNA sequences and target to

enhance the future search techniques in these sequences. This chapter also provides novel

Boolean function based exact search methods which operates on one of the data

structures developed.

The experimental results measure and analyze the scalability and efficiency of various
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search techniques presented in this chapter. The methods are compared with suffix tree

and R-tree based search strategies. The worst time complexity for searching a suffix tree

is the length of the pattern. Once the suffix tree of the sequence is constructed, it can be

used for all searches. However, the suffix tree occupies a large amount of memory if the

sequence is long. The experiments of the proposed approach with large DNA sequences

reveal the fact that this approach is scalable and outperforms the suffix tree and R-tree

based methods.
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CHAPTER 4

APPROXIMATE PATTERN SEARCH

4.1 INTRODUCTION

In real world biological applications, most relevant sequences are ”similar” than being

exactly the same. DNA sequences frequently deformed because of evolutionary mutations

as well as experimental errors. The correct sequence may have small difference than the

sequence we are searching for. Thus K-mismatch queries are to be developed to complete

the process of developing any search procedure.

This chapter focuses on the problem of string matching that allows errors, i.e.

mismatches. The problem is also called the approximate string matching. This is a more

realistic problem formulation and allows us to report all sub-strings that match the string

S up to K mismatches, where K is at most M , and practically much less than M . The

number of allowed mismatches is typically given as a part of the input and is denoted by

input variable, K. This chapter presents a function-based approach to the approximate

string search problem known as K-mismatch. The statement of problem is: given a short

substring S of length M , and a long text T of length N , and a maximal number of errors

K, to find all positions j of the patterns in the text that matches P with at most K errors.

Example 1: Let’s consider the DNA sequence D = AGCGCGAGCG and sub-string

S = AGCG. In this case N = 10 and M = 4, respectively. There are two sub-strings in

the DNA that match S. They are highlighted in bold font, and their positions are 1 and 7

respectively.

In Example 1, there are three sub-strings for K = 1. The third sub-string allows for one

mismatch that starts at position 3 and is underlined. This definition of approximate

matching is also referred to as the Hamming distance-based approximate matching.

There is another metric called the edit distance that allows minimum number of edits to

transform one string into the other, with the allowable edit operations being insertion,
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deletion, or substitution of a single character. The number of the mismatch within the

sub-string may be defined as the mismatch score of the sub-string. In Example 1 the

sub-string CGCG which appears at base position 3 needs 1 edit to transform to the

sub-string S.

The algorithms developed and presented in this chapter return all the matching strings

and find the position of the strings in the DNA sequence which have size exactly |S| bases

and differ to the input string S by up to K bases.

4.2 BACKGROUND AND RELATED WORK

There are several versions of the methods exist for approximate search procedure, where

the pattern is pre-processed but the text is not pre-processed [37], [4], [9]. Their

complexity varies from O((K + LogM)N/M) to O(MN). When the search operators are

operating directly on the database they are called online version. Such approaches are

slow when they are operating on very large strings. Offline versions are more suitable for

large string searches where typically a data structure is built prior to any string searches.

Examples of offline methods can be found in [47, 22, 23, 30, 7] among others.

Many of the indexing methods used for approximate search process [29] are based on

suffix trees. A suffix tree is a trie data structure built over all the suffixes of S. At the leaf

nodes the pointers to the suffixes are stored. Each leaf represents a suffix and each

internal node represents a unique substring of S. Every substring of S can be found by

traversing a path from the root. Each node representing the substring ax has a suffix link

that leads to the node representing the substring x. These suffix-tree-based methods

construct a suffix tree on data and query string sequences. From the constructed suffix

trees the search method is to traverse down and is to find a common ancestor node of

both search string and data sequences. Search method is to traverse the sub-tree of the

node found until k mismatches are encountered. The time complexity for approximate

matching for most efficient suffix trees is O(M + N + k) and uses O(M + N) space. The
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time complexity for approximate matching for most efficient suffix trees data structures,

is O(M + N + k) and uses O(M + N) space [29]. Although suffix arrays data structures

are more space-preserving than suffix trees, they still require large memory space for

indexing massive data such as the whole genome of a human. The space consumption of

an ordinary suffix array for a given DNA sequence of N characters is O(NlogN). The

occurrences of a substring of length M characters can be found in O(MlogN) time by

searching the pattern on the suffix array by binary search procedure. There have been

several attempts to reduce the space of the suffix trees or arrays [6, 3, 48]. They built a

data structure for the index. Then to answer queries, they need both text as well as the

index, hence extra space is still required. The method developed by [43] uses a suffix tree.

This method only indexes the beginning of blocks produced by Ziv-lempel compression.

The general idea of Ziv-lempel compression is to replace sub-strings in the text with a

pointer to a previous occurrence of them. This type of compression algorithm is based on

a dictionary of blocks. As each new block computed it is added to the dictionary, two data

structures (LZtrie and RevTrie) are created using blocks of text. Then, pattern search is

done by finding the occurrence in a single block or in two blocks or more than two blocks.

As described in chapter 2, Section 3.2 of this dissertation, many existing methods reduce

the search space using matching statistics for approximate search procedure. The detail

explanation of such search engines BLAST [39] and FASTA [40] are described in chapter

2, section 3.2. Another type of indexing method called weighted indexing method is also

described in this section for exact search procedure. The weighted indexing method

proposed by [13] use R-tree based data structure for approximate search procedure also.

The detail explanation of such procedure also explained in chapter 2, section 3.2. The

space and time performance of proposed method in this chapter is compared to above

methods [43, 39, 13]

All of the proposed search algorithms in this dissertation chapter use very efficient

built-in BDD library functions. BDDs enable us to manipulate a very large scale data set
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in a small space and within a short time. The search time is proportional to the BDD size

(number of nodes in the graph), rather than the number of bases in the DNA sequence.

The set of positions in the DNA sequence that match the input string, will be reported as

a Boolean function. The number of appearances are reported implicitly by a simple

manipulation of the output function. The approach can be modified to report number of

appearances in pre-specified ranges of a DNA sequence.

4.3 FUNCTION GENERATION AND STRING SEARCH FOR

APPROXIMATE PATTERN SEARCH

Algorithm 7 describes the procedure of generating an approximate string function and

subsequent string search. The input to this algorithm is the DNA function, F constructed

from the DNA sequence from Algorithm 2 in Section 3.3.1 and the string function FS

constructed from the search string using Algorithm 4 in Section 3.3.3. Let Fas be the

approximate string function which consists of all the cube (described in Chapter 2) that

are at a distance K from the string function FS. Algorithm 7 efficiently uses the built-in

cudd function Cudd bddclosestCube (described in Chapter 2) to find the approximate

match of the search function FS. This algorithm maintains function Cube Func (see also

line 4) which consists of all the minterms that are at distance K from FS. These

minterms represent the first set of matching strings. This function is generated by using

built-in procedure, Cudd bddclosestCube(See also line 4). Then in line 2, Cube Func is

excluded from the DNA function using built-in BDD operators and saved as approximate

string function (Fas). Steps 3-6 are repeated as shown by the while loop in line 5, in order

to collect all the cubes with Hamming distance K from FS. These cubes represent strings

with K mismatches. Then the function is co factored to extract the position, the same

way it was done in exact matching using procedure Cudd bddCofactor. This is shown in

step 10 through 12. Finally, all the minterms of position function P are printed using

Cudd bddPrintminterm which represents the matching strings positions (See also line
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12-13).

Algorithm 7: K-mismatch(F , FS,K) with K > 0

Input: DNA Function(F ) from Algorithm 9 and number of mismatching base K

Input: Search-string Function FS from Algorithm 4

Output: Number of approximately matched sub-strings and matching positions

1 Initialize Approximate String Function Fas = 0 ; Initialize Cube Func;

2 while Cube Func is not null do

3 Ftempdna = F ;

4 Cube Func = Cudd bddclosestCube( F , Fs, K);

5 F = Cudd bddAnd(Ftempdna , Cube Func’ );

6 Fas =Cudd bddOr( Fas, Cube Func);

7 end

8 GenerateT(m0m1...m2L−1 b0...bk−1)=Cudd bddAnd(F , Fas);

9 for each i = 0 until 2L-1 do

10 P = Cudd bddCofactor(T, mi) ; / * Built-in BDD operator

11 end

12 Find Positions: Cudd PrintMinterm(P) / * Built-in BDD operator

13 Find Number of occurrences:Cudd CountMinterm(P) / * Built-in BDD operator

In the BDD of the DNA function at each level (described in Chapter 2), the distance K is

set at the largest distance value. In order to find a large cube at minimum distance, we

try to find a cube recursively using negative co-factor that has the same or smaller

distance than a cube that has been found recursively in the earlier steps when using

positive co-factors. We examine all four pairs of co-factors (positive and negative)of
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functions f and g when both f and g depend on the top variable. In our case f is DNA

function F and g is string function Fs. However, when g does not depend on top variable

i.e., gt = ge = g , then Hamming distance H(f, g) = min{H(ft,gt), H(fe,ge), H(ft,ge)+1,

H(fe,gt)+1)} = min{H(ft,gt), H(fe,ge)}. Therefore in this case, we have two pairs of

co-factors to compare.

The following example illustrates Algorithm 7. Consider the DNA function F =

a′b′c + a′bc′ + ab′c′ + ab′c + abc′ and String function Fs = ab′c and K = 2.

Figures 4.1 and 4.2 demonstrate the recursion procedure of Cudd bddclosestCube. For

simplicity in demonstration it is shown how to derive the first cube of function that is at

distance K and one of the four way comparison of four co-factors. In Figure 4.1, BDD of

a DNA function F and string function FS is presented. Figure 4.2 represents the steps to

find the Cube function that is at a distance K from the search function FS.

The minimum Hamming distance between the two functions is minimum of the

comparison of four co-factors from the next level. Hence when positive co-factor of the

DNA function is compared with the positive co-factor of string function, the distance d is

0 + d1, where d1 is the minimum distance from the next level as shown in Figure 4.2. In

the next level which is shown in step 1, the distance d1 is calculated to be 1 + d2 where d2

is the minimum distance from the next level. In the next level that is shown in step 2, the

minimum distance is 1 (after comparing all the co-factors). Hence, now d = 2 and

corresponding cube is abc′. As K = 2 the cube abc′ corresponding to distance d = 2 is

separated and returned. It can be seen that abc′ is at a distance 2 from the search

function ab′c.
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Figure 4.1. BDD of a DNA function F and String function FS
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Figure 4.2. Comparison between Co-factors of Function F and FS
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The time complexity of Algorithm 7 mainly depends on the procedure,

Cudd bddclosestCube. Cudd bddclosestCube function works similar to Cudd bddAnd by

traversing and comparing nodes of DNA function and search function. The depth of

recursion depends on the distance d (mismatch factor K in the algorithm). Hence the

over all time complexity of this procedure is O(KNnMm), where Nn is the number of

nodes in the BDD of the DNA function and Mm is the number of nodes in the BDD of

search function. The time complexity is shown to be linear to the number of nodes

present in the BDD graph of the DNA function.

In order to reduce the time due to iteration in the while loop of Algorithm 7 (see line 3

to 8), we tried to generate another function by modifying the build-in procedure

Cudd bddclosestCube. The new procedure All Bddclosestcube returns a function which

contains the entire cube that is at a Hamming distance K from the minterms of search

string function Fs. Instead of an external loop in Algorithm 7 (See also line 3-8) an

internal loop is placed in the built-in function Cudd bddclosestCube and the function was

named as All Bddclosestcube. By using this function, all the possible approximate

matching strings are found at one time. In this way the matching cube is not excluded

from the DNA function each time, hence avoids the iteration. However we observed that

the time difference is minimal hence the results due to modification were excluded from

the experimental section.

4.4 A GENERAL ALGORITHM FOR APPROXIMATE STRING SEARCH

In order to handle very large search-strings, Algorithm K-mismatch(F ,FS, K) is modified

and is called K-mismatch (F ,FS)-general (see also Algorithm 8). In this approach when

the input search-string exceeds a certain length called threshold length Sth, it is split into

multiple strings of roughly equal size similar to exact search procedure to handle very

large string searches. Then multiple search functions are created one per sub-string from

them. The value of Sth is determined and its value has a significant impact in the
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performance of the approach. Our experimental results in Section 5.5 show that value of

Sth is around 50 to optimize the performance of the approach. The minterms of the DNA

function are the same size as the minterms of each of these string functions. The overall

search time is calculated by adding the search time for each of these string function. By

proceeding this way, the memory requirement for storing the output function of each

AND operation is significantly less and therefore the overall search process is significantly

faster than K-mismatch (F ,FS).
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Algorithm 8: K-mismatch (F ,FS)-general

Input: DNA Function(F ) from Algorithm 9 and number of mismatching base K

Input: Search string Function FS from Algorithm 4

Output: number of occurrences of substring S in DNA sequenceD and

positions of matching sub-strings In the DNA sequence D

1 partition search strings to j sub-strings

2 set total matches = 0

3 for each j

4 do K-mismatch(F , FS,K)

5 return Kj

6 /*Kj is the number of mismatches for jth substring */

7 total mismatches = total mismatches + Kj

8 if total mismatches ≤ K

9 Pj =cuddBdd Or( pi);// Generate position function Pj

10 Report Positions ( Pj , Pj+1)

11 else

12 j = j + 1 ;

13 Continue;

14 Report number of positions matched for the given K

Explanation: The idea of this algorithm is to split the pattern in to j pieces, search

each piece in the DNA sequence BDD allowing K errors; provided that each search string

piece is greater or equal to K. Then extend the approximate matches to complete the

search and find the occurrences.
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Step 1: The very first step is two split the search string into two disjoint sub-strings of

size St (the optimum search string length). Then form the function from the DNA

sequence of minterm of size of the same length as the sub-strings of the search string. For

each of the sub-strings form the substring function and hence BDDs.

Step 2: The next step is do an approximate search for each of the substring functions

using BDD closest cube function. Then find the matched positions for the given K value (

by checking total mismatches (see also steps 7 to 9 in Algorithm 8) and form a position

function. Do the same for the next substring. If the position functions reported by the

search of next substring is a shifted version of the position functions of previous substring

then report the position else continue until done. Function Report Positions(see step 10)

in the algorithm checks this shifting procedure and reports the positions.

The following example describes the search process using each step of the algorithm.

Example 1: Let us consider a DNA sequence D = AGCTAGCT and search string S=

AGTT with a K = 1. For K = 1 there should be two matching positions, position 1 and 5.

Step 1: Let’s say the optimum length is 2, hence the search string AGTT is split in to

two sub strings AG and TT of length equal to 2 (see line 1 of Algorithm 1).

Step 2: Do the search of sub-string AG for K = 1 using Bddclosest cube. For position 1

there is a match for K=0, there are no other matches until position 5. Then there is a

match at position 5 for K =0. Similarly do a search for substring TT for K= 1. For

position 3 there is a match for K= 1 and there is match at position 4 for K = 1. There is

also match at position 7 for K =1.

Step 3: Next step is to find out if positions in the second group are the 2 shifted version

of first set.For total K value less than equal to K find if the position function in 2nd set is

a sifted version of first one. In this case position 4 is two shifted of position 1 and position

7 is two shifted of position 5. Hence the approximately matched stings are in the position

1 and 4 for K = 1.
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4.5 EXPERIMENTAL RESULTS

The experimental conditions for approximate search procedure are same as the

experimental conditions as in Chapter 3. The experiments were performed on large DNA

sequences of standard reference sequences (in FASTA format) downloaded from

NCBI [42] databases and on benchmarks associated with the BLAST [39] tool ranging

from (10 to 100 Mbps). Large reference sequences were chosen to evaluate the

performance in large data sets. The DNA sequences downloaded from NCBI [42]

databases have their identification number (GI Numbers) and are stored in a separate file.

The sizes of different DNA sequences are reported in respective tables. The search process

of several sub-strings of different lengths were done on these DNA sequences for

approximate search and allowing K mismatches. Search process was also performed using

search string that was associated with local BLAST tool and is identified as fragments

GI:6164828 and GI: 308801197.

The developed algorithms have been implemented in the C language. Experiments were

performed on UBUNTU platform having 4GB RAM and with a speed of 3 GHz. This

procedure was repeated for several sub-strings. The proposed string search methods were

compared with method [43] in terms of time and space performance. The code for the

method proposed in [43] was downloaded from the site provided by the paper and

implemented on the workstation that we used for implementing our algorithms. The

proposed string search methods were also compared with BSI and WSI methods [13] in

terms of time performance. Since the code could not be obtained from the authors [13],

the experiments of the proposed method were performed in the workstation having the

same configuration as reported in the methods [13].

The performance is compared to local BLAST. For a fair comparison, as explained in

Section 4.1, BLAST was loaded to the same workstation, where proposed approach was

evaluated. BLAST search time is not always consistent even if the string size is same.

Therefore the average time of several experiments was taken for a particular search string
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size.

The developed methods K-mismatch (F , FS, K),and K-mismatch(F , FS,K)-general were

evaluated for a wide range of search string (query) length and their search time for

approximate search procedures. Experiments were conducted for 20 search strings each

and average was calculated for each search string size (20, 128,256 etc.). These

search-strings are randomly chosen and modified to fit the same size as the existing

methods [43] [13] [39]. These search-strings were derived from the sequences of NCBI

databases [42].

While comparing to BLAST, we listed the sequences provided with the tool. In the

proposed approximate search procedure (K-mismatch (F , FS,K) and (K-mismatch (F ,

FS,K)-general), the experiments were performed to record the search time for various K

values. The value of K is varied from 0 (for exact search) to 15. Then the experiments

were conducted by recording various search time with the size of the DNA sequence.

A comparative study on time performance of k-mismatch (F , FS K) with K ≥ 0 and

K-mismatch (F , FS)-general procedures vs LZ-index and BLAST [39] is provided in

Table 4.1. A 100Mbps DNA sequence was used to compare with BLAST [39] and disk

based method of [43] in Table 4.1. Column 1 of Table 4.1 provides the search-strings of

various lengths and column 2 provides the time to search in second by proposed method.

It can be seen that the search time for these multiple patterns is less than the search time

of these patterns, when the search is done sequentially. The search time for LZ-index

method is provided in Column 4. Column 5 provides the search time for BLAST method.

It can be noted that the search time for the proposed method K-mismatch (F , FS)with K

≥ 0 and K-mismatch (F , FS)-general is significantly less than all the existing

methods [43], [39] for any of the DNA sequence size. This is due to the fact that the

search time is linear to the number of nodes in the BDD of the DNA sequence, which is

much less than the number of bases in the sequence. The performance of proposed

method remains faster than other two methods. For longer strings the increase in time is
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almost linear. It may be noted that the method [13] can not handle search string size

above 1280 bases. Hence the search time is not available for such search string sizes listed

above in Table 4.1. The number of nodes in the BDD of the resulting function reduces

significantly by using partition method. The Performance is enhanced because of the

reduction in storage space.

The comparison of the number of positions for approximately matched strings for both

BLAST and developed method (K −mismatch(F, Fs,K)) in Section 4.3) are provided

in Figure 4.3. The X-axis lists the DNA sequences of various sizes from [42] and the

input search-strings used for the search. The Y-axis represents the number of positions

that matched the input string approximately. We found out that the percentage of

mismatched bases by local BLAST was on an average 10 %. Then, we set K value to be

10 % of the number of bases of search string. These results show that BLAST misses

some of the positions as in exact search procedure. It has been seen that for longer DNA

sequence size the number of matched position missed by BLAST is more.
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Table 4.1. CPU time performance of proposed method vs [43] [39] in
the 100Mbps DNA sequence from [42]

Search-string size Proposed Method LZ-index [43] BLAST [39]

(in base) sec sec sec

20 0.010 0.110 0.210

30 0.015 0.118 0.220

40 0.022 0.219 0.350

60 0.565 (0.055 a ) 0.35 0.510

128 1.015 (0.945 a ) N/A 4.000

256 2.018 a N/A 5 .000

512 3.58 a N/A 7 .000

1028 4.01 a N/A 8 .000

2056 6.050 a N/A 9.000

4112 7.1200 a N/A 10.000

8224 8.00 a N/A 12.000

fragment-1(1347 bps) 5.11 a N/A 7.000
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Figure 4.3. Comparison of number of matched positions in different
DNA sequences using approximate search procedure

Finally, a variation of the developed approach (K −mismatch(F, Fs,K)) with different

error rates has been studied. In Figure 4.4, the search times for different K values which

varies from 1% to 15 % of search string size are provided and compared with [13]. The

DNA sequence used is of length 10Mbps from [42] for a search string size 100. Again the

sequence size was chosen to compare with method [13] as Sequence size longer than

10Mbps was not reported by [13]. The X-axis represents various K (from 1% to 15%).

The Y-axis represents the time taken to do the approximate search in second.
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It has been found out that with longer search string and higher error rate (K value), the

search time increases. However it is significantly less than the existing BSI and WSI

method [13]. The results demonstrate that with the increasing K value the search time

increases but the developed method outperforms the other existing methods in

performance.

Figure 4.4. Search Time for Various K Value (on a 10 Mbps DNA sequence from [42])

4.6 CONCLUSION

Chapter 4 of this dissertation document presents novel algorithms for a more general that

is approximate search process in a DNA sequence stored compactly as a function. The

complexities of developed algorithms depend on the built-in procedures used in these

algorithms. The developed algorithms use these efficient built-in procedures from the

CUDD package which takes time proportional to the number of nodes in the BDDs of the

functions. The number of nodes present in the BDDs of a DNA function is significantly
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less than the actual DNA sequence size. We have compared our methods with existing

data structure based methods such as BSI method and WSI methods [13] LZ-index [43]

and BLAST [39] search for performance evaluation. Experiments with real biological data

show that the developed method out performs any existing method. BLAST is capable of

handling multiple search-strings at the same time. Our method can be modified to

efficiently handle multiple strings searches by utilizing more sophisticated string search

functions.
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CHAPTER 5

GENOME REARRANGEMENTS

5.1 INTRODUCTION

Evolution happens due to both local and global mutations of DNA molecules. Local

mutations (point mutations) take place due to substitution, insertion, or deletion of single

nucleotides (A, G, C or T), while global mutations (genome rearrangements) take place

due to the change of the DNA molecules on a large scale. A chromosome in a genome is a

sequence of nucleotides and is represented by an ordering of certain oriented markers

called genes. A genome which contains a single chromosome is called unichromosomal

genome and one which contains multiple chromosomes is called multichromosomal

genome.

Genome rearrangement is a new and important research area that studies the gene orders

and the evolution of gene families. Beyond the traditional sequence-based analysis, it is

possible to extract additional phylogenetic information from the gene order. Gene order

data present significant mathematical challenges which are not encountered when dealing

with DNA sequence data. Many evolutionary events may affect the gene order and gene

content of a genome, and each of these events creates its own challenges [71]. These

genome rearrangements reveal important information about the evolutionary history of

genomes. With the development of fast sequencing techniques, hundreds of genomes are

available to date and it becomes a challenging task to tackle the problem of

reconstruction of the evolutionary history due to the genome rearrangement especially

when all possible rearrangement operations are considered. A phylogenetic tree captures

specification events (also called rearrangement operations) among multiple organisms.

Constructing a phylogenetic tree requires inferring ancestral relationship among multiple

organisms based on currently available data.

Studying genome rearrangements is an important tool that aids in the understanding of
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evolutionary events. Comparative analysis of plant or insect genomes is expected to yield

significant insights into evolution, development, and regulation [69]. However storing all

the genomes resulting from all possible rearrangements is a difficult task.

For example the Campanulaceae Chloroplast data set has 13 genomes and 105 markers

(genes). It is one of the most challenging genome rearrangement data sets studied by [70]

and [71]. The variety of rearrangements in these plants exceeds any reported

rearrangements in any group of land plants. Hence it makes this data set a challenging

problem for any genome rearrangement study [57].

We have chosen Campanulaceae Chloroplast data set to analyze relatively low gene length

chromosomes. The human-mouse-cat data consists of 193 markers, shared by all three

species. We have used this data set to analyze relatively high gene sequence length.

Development of new algorithms will make genome rearrangement analysis more reliable

and efficient, while potentially revealing new evolutionary patterns. In addition, the

algorithms will enable a better understanding of the mechanisms and the rate of gene

rearrangements in genomes, and the importance of the rearrangements in shaping the

organization of genes within the genome.

With the availability of a large number of fully sequenced genomes, particularly from

closely related species, there is a need for reconstructing detailed genome-wide

evolutionary histories. This may help studies on diseases related to rearrangements of

certain genes. For example, a list of diseases related to particular genes in human

chromosomes can be found in [67]. Only a few genes out of thousands available in human

chromosomes can be analyzed for gene related diseases. Some examples of data sets

studied are given in [72]. As stated by Bader, ultimately this information can be used to

identify microorganisms, develop better vaccines, and help researchers better understand

the dynamics of microbial communities and biochemical pathways [66].

There are many types of genome rearrangements such as reversal, transposition,

trans-location, fusion, fission etc. The next few paragraphs give general definitions of
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several biological terms that are used in genome rearrangement research.

A gene which is a segment of a DNA sequence is represented as a positive integer or a

sign integer. The genes are represented by numbers 1, 2, ..., n. The two orientations of

gene i are represented by i and -i. Most comparative mapping techniques consider only

the physical locations and relative order of genes in each chromosome, but ignore the gene

orientations. This is due to the fact that all the sequencing methods do not provide gene

orientations. It also turns out that the genome rearrangement problem (unichromosomal

and multichromosomal) for unsigned permutations is NP-hard, but the same problems for

signed data can be done in polynomial time. The method proposed in this chapter can

handle gene orientations of the genes.

A gene sequence or chromosome is a permutation of genes over E, where E is a set of

genes. Unless clearly stated, each gene appears exactly once in a chromosome. For

example, a uni-chromosomal genome with n = 5 genes which has both the orientations

can be represented as 2 −1 3 −5 4.

A genome is a collection of chromosomes. A chromosome or gene sequence G is

represented by a gene ordering. Let G be denoted as g1g2...gn, where g1, ..., gn are the

genes in position 1 to n. Rearrangement operations such as transposition work on strings

of genes G = g1...gn of length |G| = n.

Exchanging DNA segments (identified as a number) or genes from their respective

positions in the genome is called transposition. Transposition Ti,j transposes the gene

from position i to j in G, That is transposition Ti,j exchanges the gene position gi and gj.

So Ti,j (g1...gn) = g1...gi−1gjgi+1...gj−1gigj+1..gn. In the following example, a few

transposition operations are provided and the final rearranged gene sequence is presented.

For 4 transpositions to occur in a gene-sequence G = 5 1 2 3 4 a greedy algorithm might

need 4 steps:

Initial gene sequence: 5 1 2 3 4

Sequence after T1,2: 1 5 2 3 4
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Sequence after T2,3: 1 2 5 3 4

Sequence after T3,4: 1 2 3 5 4

Sequence after T4,5: 1 2 3 4 5

However the approach that is proposed in this section allows us to record gene sequences

once K number Tij transpositions have been applied, for any value of K and for any i, j

values 1 ≤ i, j≥ n.

This is a powerful data structure that allows us to keep systematically all possible gene

sequences that have evolved from the original sequence due to transposition operations.

5.2 BACKGROUND AND RELATED WORK

The traditional phylogenetic tree construction is based on analysis of individual genes. In

the past, constructing a phylogenetic tree is done by comparing nucleotide sequences of a

single gene or a few genes [60] and there are several representative approaches. The

neighborhood joining method is a heuristic, and the method greedily merges a pair of

Genomes based on the minimum evolution principle. Maximum parsimony (MP) methods

find a topology with the minimum number of mutations (called the lowest parsimony

score), and maximum likelihood (ML) methods attempt to find a tree with the highest

likelihood value under a certain evolutionary model. The MP and ML methods are

generally more accurate than the neighbor-joining method but also more computationally

expensive. These methods, using nucleotide sequence data, find a reasonably accurate

tree topology for close genomes.

In contrast to the individual gene comparison, there are genome rearrangement studies

that are based on genome wide analysis of gene orders rather than individual gene

comparison [62] [61]. Two important rearrangement operations transposition and

reversal were studied in [49] and [54]. They considered reversal and transpositions as an

approach for understanding the genome arrangements related to mammalian genomes.

Many current evolutionary approaches to genome rearrangement are based on the study
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of biological sequences by [53, 56, 58], among others. Historically, work involving

evolution is done on sorting gene-sequences hence calculating reversal and transposition

distance. The genome rearrangement with transposition were studied in [54].

The very first work on computing evolutionary distance (also called reversal distance) was

started by Keceoglu and Sankoff [52]. The algorithm proposed by these authors is an

exact algorithm which finds an optimal solution in O(m.n)) time and O(n2) space. Let n

denote the number of genes in m genomes. They used branch and bound method to find

minimum reversal distance. Since then, many related work been done to improve this

exact algorithms and many approximate algorithms are also proposed. The method in

[49] gave an approximation algorithm with 1.5 approximation ratio and worst case

execution time O(n3/2). The first polynomial time algorithm was given by Hannenhalli

and Pevzner and it runs in O(n4) for permutation of n genes. Berman etal [73] exploited

this algorithm and developed a new approximation algorithm which runs in O(n2) time.

A linear-time algorithm for computing reversal distances was proposed by [50]. The

improvements due to better bounding and new search ordering (the layered method) are

discussed in [51] later. All these algorithms give reversal distance as well as series of

reversals. However the time complexity mentioned here are for a unichromosomal genome.

It is a NP-hard problem to represent multichromosomal genome and give all the reversals.

All of the traditional studies of genome rearrangements involve solving combinatorial

problems to find the shortest series of reversals or transpositions to transform one genome

to another. Some of these studies were done by [55] and [53].

The proposed approach here is to consider all possible transpositions to construct an

evolution structure which will represent the evolution of different genomes due to all

possible transpositions.

The methods developed here are capable of creating a graph structure for all possible

gene sequences generated due to the evolutionary effect. The unique encoding scheme

targets future efficient retrieval of the ancestral gene sequences. In evolutionary
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approaches, one of the basic ways to construct a genome graph is by applying a sequence

of transformations (transposition or reversal). A genome graph represents the evolution of

genomes due to rearrangement operations. A detailed explanation is provided in

Section 5.3.

A function-based method is also proposed to handle all possible rearrangements using

transposition operations on the genome efficiently and store each resulting genome in a

very efficient data structure called the evolution structure.

The proposed approach handles all possible transpositions of an initial genome. The

evolved genomes are kept in groups based on their transposition distance from the initial

genome. The method proposed here, transforms the gene sequences (chromosomes) to

Boolean functions and stores them in a canonical data-structure. The algorithms

proposed here are for the genome rearrangements based on transposition operations.

Operations such as reversals can be interpreted using transpositions.

Experimental results show that evolved chromosomes can be rearranged and stored

efficiently. Both time and space efficiency of the proposed method is analyzed.

The novelty of this approach is a function- based unique encoding scheme and strategy to

construct an evolutionary structure, which is based on parallel transpositions. A function

based algorithm operates on the evolutionary structure iteratively to perform all possible

transpositions on the genomes at a given transposition distance. Then it forms the

collection of genomes at the next transposition distance. Each transposition distance

consists of several BDD functions.

This chapter is organized as follows: In Section 5.3 a function-based encoding method for

an evolutionary structure is explained. Definitions are also provided and the encoding

process of a genome to a gene function is explained. The algorithm which generates the

evolution structure using gene transpositions is given in Section 5.4. Section 5.5 explains

the experimental procedure and provides the results of the experiments to support the

proposed method. In this section it is shown that many species can be transposed and
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accommodated in the genome graph. The results show that the proposed method is

scalable. Finally Section 5.6 concludes the chapter.

5.3 EVOLUTIONARY GENOME STRUCTURE

In the developed method, the operations are performed based on transpositions of the

genes in gene sequences; hence they are position specific. However in our encoding, gene

positions are not explicitly stated. Instead, the positions are the order they appear in a

chromosome. When transposition or reversal occurs,the position of these genes change.

An evolutionary genome graph is constructed by applying transpositions in parallel.

Another novelty of this method is that the genome graph is capable of encapsulating all

possible rearrangement operations due to transpositions. Each stage contains the new co

shared graph from the function that is changed due to transposition in the previous stage.

Given an initial genome, the evolutionary structure is shown in Figure 5.1. It consists of

different stages. The first stage is the genome function which represents the initial

genome. It is shown by one vertex G0 in Figure 5.1. Each vertex at the next stage

represents sets of genome that have evolved by a transposition Tij operation, on all the

genomes at the previous stage. The evolutionary structure is constructed using this

process by applying all possible transpositions at each stage. Each arrow from one stage

to the next represents different Tij operation on all the genomes at previous stage.

The depth of the evolutionary structure is the number of stages.
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Stage 1 Stage 3Stage 2

G0

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

T1

T2

T3

Figure 5.1. Evolution Graph of A Genome

In the proposed method, sets of genomes are represented by a Boolean function. Such

genome function FG are stored in a canonical data structure called BDD (see Chapter 2).

The advantages of using a BDD is twofold. First, if properly represented, Boolean

functions can be stored very efficiently in this data structure. Second,these functions can

be manipulated efficiently in very little time by simply incorporating many built in base

procedures in the manipulating algorithms.

In the encoding scheme proposed here, each gene sequence (which is originally

represented by a sequence of numbers) corresponds to a minterm of a Boolean function.

In each sequence, gene positions are according to the order they appear. For example, in
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a gene sequence G1 = 2 1 4 3, Genes 1, 2, 4 and 3 are in positions 2 , 1 ,3 and 4

respectively. For a unichromosomal genome with n=4 genes and with an orientation can

be represented as −3 4 2 −1. In our encoding scheme a positive literal stands for

positively oriented gene and negative literal stands for negatively oriented genes.

Initially, we form a function consisting of a single minterm where all the genes appear in

lexicographic order. That will be the reference function G0 and the indexes will be the ids

of the genes. Next, the function will be permuted using different Tij operation and

different functions will be generated and explicitly kept as nodes at the next stage.

Algorithms to either permute or to produce negatively oriented markers are minterm

implicit procedures, i.e., they operate in parallel to all the minterms (in our case evolved

genes) at the current stage. Detailed explanations on these procedures are given later in

Section 5.4.

There are a number of BDD packages developed to store Boolean functions and provide

built in logic operation procedures to manipulate these BDDs. We have used the

CUDD [11] package for implementing the presented approach.

Algorithm 9 describes the procedure of generating a genome function. The number of

onset minterms in the genome function at a particular stage is equal to the total number

of gene sequence evolved in that stage due to Tij operations, for given i and j, to all the

genes at the previous stage. This process avoids gene enumeration at the previous stage

and transposes all these genes in parallel. That is, for transpositions of all the genes of

positions i with all the genes of position j of all the sequences of a particular stage is

performed at one time. Different stages are represented by stage numbers.

Let S is the number of stages constructed. Stage bits which are created using the log2S

equation, are added at the beginning of the minterms. These identify the stage that a

particular genome belongs to and its count provides the depth of the evolved graph

structure.

At each stage, we use tag bits to distinguished genes that have evolved from the previous
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stage using some Tij operations. Therefore each gene in some stage of the structure

consists of three parts. Its gene sequence representation, the stage part and the tag part.

All three parts are binary cubes and therefore the gene is a minterm of a single boolean

function for the whole stage. Evolved genes(minterms) by some Tij can be easily

identified by their distinct tag value. For this reason, our genome structure represents

them by distinct nodes.

5.4 ALGORITHMS FOR REARRANGEMENTS DUE TO

TRANSPOSITIONS

Algorithm 9 (Genome-Function) presents the procedure of generating the initial genome

function from a gene sequence. The input to Algorithm Genome-Function is a given gene

sequence of a particular genome represented by numbers as mentioned in the previous

section. The encoding scheme is as follows:

Algorithm 9: Initial Genome-Function

Input: Gene-sequence(G)

Output: initial Genome-Function FG

1 Create n level fields each of length log n

2 Mi= Generate Initial Minterm

3 FG = Generate Initial Genome-Function

4 Report FG

In Algorithm Genome-Function, the first step is to calculate minterm bits to create the

minterms of Genome-function. In line 1, variable bits are created to represent the stages

of the genome function, to tag the transpositions and to encode the genes in a minterm of

the genome function(see also line 2 in Algorithm 9). Tag variables that emulate function

Fij could be kept as external pointer. A minterm is generated from these variables to
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generate the genome function. Lines 2 to 4 of the algorithm depict this procedure. As

stated in line 3 of this algorithm, function ”Generate Initial Minterms” takes the variables

created and construct the single minterm of the Genome-function. A simple

Cuddbdd And operator is used on the variables in this function to generate the minterm.

Finally, function ”Generate Initial Genome-Function” takes the minterm created and

generates the Genome-function. This operator is recursive and operates in linear time to

each of its operands.

Algorithm 10: Operation Transpose (K)

Input: Initial Genome-Function FG, Stage K

1 Generate initial Genome-Function FK
G ;

2 For each position pair Pij ( Pij=1 to
(
n
2

)
) in Genome Graph FG

3 FGnewtemp = SWAP (gi,gj, F
K
G ); /* swap the order of all genes in position i and j

4 Generate tag cube for i,j and set the ids to all minterms;

5 FGnew = FG + FGnewtemp ;

6 End For

7 Tag (SWAP);

8 Update(stage); /* updating Stage variables

9 End For

Algorithm 10 describes the procedure for transposition operation of two genes between

positions i and j in all the gene sequences in a given stage. The first stage consists of only

one genome; however the number of gene sequence grows exponentially in subsequent

stages. The problem is to transpose gene gi of position i with the gene gj of position j for

all the gene sequences at a given stage. The input to this algorithm is BDD of genome

function FG. At step 1, we generate the function that corresponds to all the genome

sequences at a given stage k. These are precisely those minterms whose stage tag part
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Algorithm 11: SWAP (gi, gj)

Input: gi, gj

1 int n; For each (l = 0; l le n; ++l)

2 bddX[n] = gi

3 bddY[n] = gj;

4 FG = Cudd bddSwapVariables(Bddmanager, F, bddX, bddY, n);

5 End For Return FG;

matches k. Since we are considering all possible transpositions, position pair are not

necessary as an input. They are only needed if few specific transpositions are to be done.

Step 1 is generating the BDD of F k
G, i.e, the function that consists of all gene sequences to

be transposed. Step 2 is to modify all the genes in F k
G using Tij operations. These are

done in
(
n
2

)
iterations. Each iteration is a call to procedure SWAP. Each call to SWAP

generates distinct functions. In the next stage which are co shared to form one BDD.

The algorithm for sub-function SWAP is provided in Algorithm 11. This is a built- in

BDD operation that simply exchanges the level of variables at stage i and j in function F k
G.

Let F 1 is a function in the initial stage. In order to form a function F 2
ij we do a single

swap between two positions i and j over function F 1 for the stage 2. This method benefits

from stage 3 and onward. In particular for any function F k
ij 1 ≤ i, j≤ n and n≥ k≥ 3 we

only need to do a single swap for all F k−1
ij functions that we co shared in the BDD.

Because of this single operation, the proposed algorithm requires O(n.n2),i.e. O(n3) swap

operations which is a polynomial time algorithm in terms of swap operation. A brute

force approach would have required O(
(
n
2

)2
) operations which is an exponential quantity.

Detail description of Algorithm 9 is given in Example 1.

Example 1: Let us consider an initial gene sequence or chromosome G1 = 123. At stage

1 (the very first stage) this will be encoded as a Genome-function FG1 of a single minterm
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whose bits are encoded from this gene sequence G1. Figure 5.2 shows the initial BDD of

the Genome-function at stage 1 and all the BDDs of the distinct functions generated after

transpositions. Figure 5.3 represents the BDD of the co shared functions generated at

stage 2.

Step 1 (Operation Transpose 1): The very first step of constructing the boolean

function from the gene sequence is to calculate the total number of bits required to

construct its minterms. Assume that we want to construct up to 3 stages. Then total

number of stage bits required is: log3 = 2. Hence stage bits are: 00, 01, 10. Similarly,

Tag variables are also created to tag each swap. since there are 3 genes present in the

sequence, for tagging purpose, we need log3 = 2 variables and number of gene bits

required for each gene is log3 = 2. The initial Genome-function FG1 is encoded as

0000000110. In this minterm, the first two bits 00 represent the stage, that the sequence

belongs to. The third and fourth bits are also set to 00 because no Tij has been applied to

the initial function. In this representation genes 1 to 3 appear in an order of 1 to 3, hence

gene 1 is in position 1, gene 2 is in position 2 , gene 3 is in position 3. In general, all gene

sequences kept in a BDD will correspond to minterms where the last six variables are

00,01 and 10 to represent gene variables at position(level) l0, l1 and l2. This is shown in

Step 2. Figure 5.2a shows the BDD of initial function.

Step 2(Operation Transpose 2): All possible transpositions will generate the gene

sequences 213,132,312. In this case there are only
(
3
2

)
= 3 different transpositions, each

resulting , to a different gene sequence. Figures 5.2a, 5.2b and 5.2c show how the BDD of

each function looks like. Each function will have different variable order. These tad fields

are set appropriately. Then they are co shared as shown in Figure 5.3 to form the

compact BDD at the next stage.

Now the new function in stage 2 is FG2 = 0100010010 + 0101111 + 0110111. Note that

the stage variables which represent the stage of the gene sequence is also updated,

represented by very first two bits (01). Observe that gene variables at different levels of
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all the minterms in the function are denoted by bold faced letters in the above expression.

Step 3(Operation Transpose 3): In this case
(
3
2

)
Tij will be performed. Each one will

operate on all the three minterms (gene sequences)of the function in Figure5.3. Each Tij

will generate minterms (gene sequence) in a way similar to the illustration in Step 2.

That way the three Tij will generate a function that contains a minterm.

Step 4(Operation Transpose 4):
(
3
2

)
Tij operations will result into all the minterms at

the end of this stage. In this example, the number of gene sequences at the end of the

step k is 3k. However, only
(
3
2

)
= 3 SWAP operations are required per stage. The number

of stages is O(4), i.e Algorithm 10 is called upto 4 times. Algorithm 10 has a loop at line

1. It executes
(
n
2

)
times. Hence we have

(
n
2

)
SWAP operations. This is O(n3) SWAP

operations. Each SWAP takes time linear to the number of BDD nodes of the Function.

This is explained below.
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(a) (b) (c) (d)

Figure 5.2. BDD of an Initial Genome and BDDs generated after trans-
positions at Stage 1
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Figure 5.3. BDD of shared Genome function after transpositions at Stage 2
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In Algorithm 11, gene gi in the position i is swapped with gene gj in the position j as

shown in line 2, where gi represents all the ith literals of binary representation of genome

and similarly the gene gj with respect to position j. This swap operations are performed

on the genome function using built-in BDD function Cudd swapVariables. This operation

swaps two sets of variables of the same size (x and y) in the BDD function. The two sets

of variables are assumed to be disjoint. It returns a pointer to the resulting BDD if

successful; NULL otherwise. In this case transposed gene function is created by swapping

variable positions between ith and jth level as shown in line 4. Swap operation is a local

operation that interchanges the variable order between ith and jth level [65]. It changes

the order of variables in a BDD by simply exchanging the positions of these two sets of

variables. This may result to a change in the size of the BDD.

5.5 EXPERIMENTAL RESULTS

To evaluate the performance of proposed algorithms in this chapter, we ran a series of

experiments on data sets in [59] under a wide variety of settings. We generated genome

graph structures from the chromosomes of these data sets. An initial gene order of n

distinct genes was assigned at the root so it can evolve down to the different stages

following the natural process of evolution by carrying out all possible predefined

evolutionary events, that is all possible transpositions.

The algorithms are implemented and tested using different sizes of gene sequences for all

possible transpositions. Experiments are performed by downloading the test data in [59]

and also performed from random gene-sequences of various sizes. The data set used for

the experiments are 13-genome Campanulaceae data sets and human data sets. The time

and space performance of transposition operations are reported for various gene sequences

taken from the data set in [59]. There are sets of gene-sequences of length nearly equal to

20,50 up to 200 genes. For convenience the name of the gene sequence is named as Gseq

then followed by the size of the sequence. For example a gene sequence of size 20 is
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represented as Gseq˜20.

Since each gene sequence contains distinct genes, our approach generates exactly the same

BDD for all gene sequences of m genes. A genome graph structure was generated for the

given gene sequences. The algorithms for transpositions were applied to the genome

structure to do the rearrangement operations implicitly and hence a very space efficient

evolution structure was developed. The number of genes per chromosome may be small

but the goal is to derive all the rearrangement scenarios and it allows one to get some

insights into a large-scale organization of the ancestors.

The proposed algorithms have been implemented in the C++ language. Experiments

were performed on a Unix platform with 6GB RAM and with a speed of 2.27 GHz. This

procedure was repeated for several gene-sequences.

Time performance of the proposed algorithm for all possible transpositions of genes of

different sizes (20-200) are reported in Table 5.1. In Column 1 of Table 5.1 number of

gene sequences in a particular genome is provided. Time to do all possible transpositions

in the first 5 stages is provided in Column 2 for various gene sequences. Column 3 lists

the time taken to do the transpositions for first 10 stages in seconds. It can be seen from

this result table, that a huge number of transpositions can be done in a very little time.

For example, transposition operations of a gene sequence of length 100 can be done in an

average of 65.57 and can go up to 10 stages, as shown in Table 5.1 and resulting gene

sequences can be stored efficiently. Due to the efficiency of the algorithm many stages of

the evolution tree can be constructed and stored in the form of this graph structure. For

each stage, the number of transpositions remains the same. However, the number of

minterms of rearranged gene function for each stage increases. Since the minterms of a

gene function are stored as a BDD, they are compactly stored.
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Table 5.1: Time performance of proposed algorithm for

all possible transpositions

Genome Average time Average time

to construct to construct

First 5 stages(Sec) First 10 stages(Sec)

Gseq˜20 0.45 0.74

Gseq˜30 3.32 4.25

Gseq˜40 12.97 15.64

Gseq˜50 50.04 51.13

Gseq˜100 62.56 65.58

Gseq˜200 251.0 261.0

In Table 5.2, the space needed for all the transpositions to construct 10 stages for

different gene sequence is provided in terms of number of nodes. The number of gene

sequences which are represented as minterms of the genome function are also reported in

this table to show the space performance. Column 1 of Table 5.2 lists gene sequences of

different lengths. Same genes as in Table 5.1 is used. Information is repeated for 5 and 10

stages. The number of nodes for storage of all the gene sequences due to transpositions

for these stages are provided in column 2 and 4 each up to 5 stages and up to 10 stages

for each gene sequence respectively. Column 3 and 6 report number of minterms

generated (corresponds to number of gene sequences) when all these stages have been

constructed. From table 5.2, it is clear that the initial gene-sequence and all the

gene-sequences due to all possible rearrangement operations can be stored efficiently.
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Table 5.2: Space performance of proposed algorithm for

all possible transpositions in 5 and 10 stages of evolution

genes Stages Number of Nodes Number of minterms

Gseq˜20 10 1460 5.49e+05

Gseq˜30 10 5242 5.34e+08

Gseq˜40 10 21654 5.55e+11

Gseq˜50 10 48234 5.629e+14

Gseq˜100 10 296688 6.529e+34

Gseq˜200 10 666051 8.036e+59

In Table 5.3, maximum number of stages for different gene sequences is provided. In

Column 1 the gene sequences are provided. Column 2 of Table 5.3 reports the maximum

number of stages. The time needed to do all the transpositions are reported in Column 3.

The space needed for all the transpositions in terms of number of nodes are reported in

Column 4 and the number of minterms of the genome function which represents gene

sequences are also reported in Column 5 of this table to show the space performance.

Figure 5.4 presents the number of stages that can be achieved for various gene-sequence

lengths. The X axis of the graph represents the gene sequences length and the Y axis

represents the maximum number of stages that can be constructed for that particular

gene sequence length. As the number of genes per gene sequence increases the number of

stages that can be constructed, decreases. This indicates that for lower level of species

which has fewer genes per sequence can cover a wide range of related species and grows

upto large number of stages.
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Table 5.3. Maximum number of stages constructed for various gene sequences

genes Maximum number of Time Number of number of

stages (sec) nodes minterms

Gseq˜20 17 21.18 425861 5.451e+11

Gseq˜30 17 23.43 444512 6.153e+12

Gseq˜40 15 45.56 4523111 5.23e+24

Gseq˜50 12 52.66 487904 5.42e+29

Gseq˜60 11 58.05 594121 5.62e+31

Gseq˜100 10 65.58 596673 6.529e+34

Gseq˜200 10 261.0 665175 8.0351e+59

Figure 5.4. Number of stages reached for various chromosome length

5.6 CONCLUSION

A time and space efficient approach to construct a graph structure for evolution is

proposed in this chapter. The presented structure accommodates all possible
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rearrangements due to transposition. The rearranged genomes due to all possible

transpositions are represented by a BDD. The advantage of such representation is to store

all the genomes due to all possible transpositions compactly and also operators can be

developed on this data structure to efficiently retrieve the history of the genomes. The

transpositions operations are implemented using the built-in BDD operator in a

procedure called SWAP. Experimental results demonstrate the efficiency in time and

space complexity of the developed algorithms.

The compact nature of BDDs makes this data structure very space efficient. In the

future, algorithms can be developed to build operators to operate on the constructed

genome graph structure and can report the evolutionary history.

An operation operation orient can be developed to orient all the genes at position i. Such

an operation is local and does not affect other variables in other levels. We can perform a

BDD traversal until level i and then the polarity of that particular node can be changed.

This again is done by co-factoring the ”then” and ”else” children of a particular node and

then exchanging them for a new node. Hence the ”then” edge of new node created now

will point to the node that was pointed by ”else” edge of the previous node and vice

versa. This particular operation is a linear operation to the nodes of the BDD.
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CHAPTER 6

CONCLUDING REMARKS FOR THE DISSERTATION

Novel scalable algorithms for biological sequence storage and retrieval are developed in

this dissertation. They use binary functions to encode DNA sequences or genomes. They

store and manipulate such encoded sequences using Binary Decision diagrams which are

very compact. The data structures developed here for both DNA sequences and gene

sequences do not store the sequences explicitly but it uses the unique encoding schemes of

binary representation to generate the sequences and then store as BDDs. Hence they are

very compact. The search methods do not operate directly on sequences but on a graph

structure that contains the binary representation of the biological sequences. Chapter 1

presented an overall introduction of the research work of this dissertation. Chapter 2

provided a detailed background on BDDs, which are the base for the developed

algorithms.

Chapter 3 presented a method for fast exact string search that relies on binary encoding

and BDD representations to expedite the search process. Algorithms for encoding and

storing of the DNA sequences were proposed in this chapter. The search procedures are

developed to operate on one of the structures developed. Experimental results

demonstrated that they are better than existing methods. They are very first and

compact. The BDD-based building algorithms can be parallelized. This would further

reduce the time complexity in constructing DNA functions from the DNA sequences.

Implementation of a parallel version of the algorithm was also explained in Chapter 3.

Chapter 4 extended the DNA sequence algorithms to find approximate matches. This

chapter presented a very efficient method for DNA pattern matching in DNA sequences.

DNA sequence of different sizes have taken and are searched by taking different pattern

sizes. The experimental evaluation demonstrated better performance when compared to

some of the other popular algorithms, both in case of time and number of matches found.
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Based on the experimental work carried out with DNA sequence data, this proposed

approach was found to be scalable.

Chapter 5 presented an approach to construct an evolution structure for genomes.

Molecular evolution studies are usually based on the analysis of individual genes rather

than entire genomes. An alternative approach is to infer the evolutionary history of the

entire genomes, rather than individual genes, based on the analysis of genome

rearrangement operations. However because of the availability of huge data and the

nature of rearrangement operations it is computationally intense to create a structure for

the entire genome. Novel algorithms were proposed to encode and create a BDD based

structure which accommodates all possible rearrangements due to transposition

operations. The experimental results section provided the evidence that the approach

operates in polynomial time to the BDD size and is capable of encapsulating huge

number of gene sequences.
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